Jacques de Vaucanson

My second machine, or automaton, is a duck… The duck stretches out its neck to take corn out of your hand; it swallows it, digests it, and discharges it digested by the usual passage.
Jacques Vaucanson, letter to Abbe´ Desfontaines, 1738

Jacques de Vaucanson
Jacques de Vaucanson (1709-1782)

Jacques de Vaucanson (1709-1782) was a great French engineer and one of the significant inventors of the 18th century, who is primarily credited with creating the world’s first “true” robots in the early 1730s, as well as for creating the first completely automated loom, and the first all-metal lathe in late 1740s.

Jacques Vaucanson was the tenth child of a poor glove-maker from Grenoble. As a little boy, Jacques quickly revealed his talent by fixing the watches and clock mechanisms of his neighbors, constructing a clock and a small automaton-priests that duplicated a few of the ecclesiastical offices. Therefore, his family initially wanted Jacques to become a clockmaker but was forced in 1715 to send him to study at the Jesuit school in Grenoble (now Lycée Stendhal). In 1725 Vaucanson took orders and joined the Les Ordre des Minimes in Lyon. In 1728 Vaucanson decided to leave the monastery to devote himself to his mechanical interests and departed to Paris, where he remained until 1731. There he studied medicine and anatomy at the Jardin du Roi, being encouraged and supported by the Parisian financier Samuel Bernard (1651-1739), one of the wealthiest men of his time.

In 1731 Vaucanson left Paris for Rouen, where he met the famous surgeon and anatomist Claude-Nicolas Le Cat (1700-1768), whose own interests in replicating human anatomical forms and movements likely stimulated Vaucanson to begin work on his first automaton. Later Vaucanson met another famous French surgeon and economist, François Quesnay (1694-1774), who also encouraged him to create artificial creatures in order to put in evidence most of the human or animal biological functions. Thus the young Vaucanson decided to further develop his knowledge in anatomy by making living anatomies.

In 1732 Vaucanson traveled around France exhibiting his first automaton which he described as “a self-moving physical machine containing many automata, which imitate the natural functions of several animals by the action of fire, air, and water.”

In 1733, Vaucanson signed a contract to build and exhibit another automaton with Jean Colvée (1696-1750), a man of the cloth whose interests included chemistry, natural history, geography, and various business ventures. In 1736 however, having squandered funds supplied by Colvée, Vaucanson signed an agreement with a Parisian gentleman, Jean Marguin, to build an automated flute player in exchange for financial support—Marguin would retain one-third ownership of the completed automaton and receive half the money taken in when it was exhibited. Thus Vaucanson devoted himself to his first android musician, The Flute Player, which he finished in 1737, and demonstrated to the French Academie in April 1738. Later in 1738, he opened an exhibition to the public first at the fair of Saint-Germain, then in a rented hall, the grand salle des quatre saisons at the Hôtel de Longueville in Paris, in which presented initially only The Flute Player, but at the end of the year added two other automata, the Duck and the Tambourine Player.

Vaucanson 3 Automata
The Flute Player, the Duck, and the Tambourine Player. From the prospectus of the 1738 exhibition of Vaucanson’s automata, Vaucanson, Le Mecanisme du fluteur automate.

Despite the substantial admission ticket (three livres, a week’s salary for a worker at that time), the exhibition was a triumph. In addition to making money, the three automata captured the fancy of Voltaire, who celebrated Vaucanson as Prometheus’s rival and persuaded Frederick the Great to invite their maker to join his court, but the inventor denied it, because Louis XV also supported him. When the visitors decreased Vaucanson started a triumphant wide tour through France, and then to Italy and England.

The Flute Player was a life-size (178 cm tall) figure of a shepherd, dressed in a savage, that played the transverse flute and had a repertoire of twelve songs (in the nearby image you can see the inner workings of Vaucanson’s flute player). The tune was played on a real instrument, a mechanism moves the lips and fingers of the player and pumps air through his mouth. The fingers are carved in wood with a piece of leather at the point where they cover the holes. The entire figure is made of wood with the exception of the arms which are made of cardboard.

The Flute Player was seated on a rock put on a pedestal, like a statue. The case, enclosing a large part of the weight engine mechanism, housed a wooden cylinder (56 cm in diameter and 83 cm in length), which turned on its axis. Covered with tiny protrusions, it sent impulses to fifteen levers, which controlled, by means of chains and strings, the output of the air supply, the movements of the lips, the tongue as well as the articulation of the fingers.

The flute player of Vaucanson
The Flute Player of Vaucanson

In the same 1738 Vaucanson presented The Flute Player to the French Academy of Science. For this occasion, he wrote a lengthy report—a dissertation entitled “Mechanism of the automaton flute player” (“Mécanisme du flûteur automate”), carefully describing how his automaton can play exactly like an alive person. These were the Academy’s conclusions: The Academy has heard the reading of a dissertation written by M. Jacques de Vaucanson. This dissertation included the description of a wooden statue playing the transverse flute, copied from the marble fauna of Coysevox. Twelve different tunes are played with a precision which merited the public attention, and to which many members of the Academy were witnesses. The Academy has judged that this machine was extremely ingenious; that the creator must have employed simple and new means, both to give the necessary movements to the fingers of this figure and to modify the wind that enters the flute by increasing or diminishing the speed according to the different sounds, by varying the position of the lips, by moving a valve which gives the functions of a tongue, and, at last, by imitating with art all that the human being is obliged to do. Moreover, M. Jacques de Vaucanson’s dissertation had all the clarity and precision of which this machine is capable, which proves both the intelligence of the creator and his extensive knowledge of all the mechanical parts.

As we already mentioned, in the same 1738, Vaucanson created two additional automatons, The Tambourine Player and The Digesting Duck (Canard Digérateur), which is considered his masterpiece.

There is very little information on The Tambourine Player. The automaton stood on its pedestal, like The Flute Player. The Tambourine Player was a life-sized man dressed like a Provençal shepherd, who could play 20 different tunes on the flute of Provence (also called galoubet) with one hand, and on the tambourine with the other hand with all the precision and perfection of a skillful musician. It must have been equipped with a very complex mechanism, because it could play two different musical instruments and, according to Vaucanson, the galoubet was the “most unrewarding and inexact instrument that exists.” Besides, he made the following note: “A curious discovery about the building of this automaton is that the galoubet is one of the most tiring instruments for the chest because muscles must sometimes make an effort equivalent to 56 pounds…”.

The Digesting Duck was Vaucanson’s masterpiece, and it was a very remarkable machine for its time. Interestingly, in 1733, several years before Vaucanson, a similar automaton was presented to the Paris Academy of Sciences by a mechanician named Maillard. Maillard’s Cygne artificiel (artificial swan) sported a mechanical paddle wheel and gears to navigate through the water while turning its head from side to side, reproducing the motion of a swimming duck. The device was described in Gallon’s “Cygne artificiel,” Machines, 7 vols., from 1735.

The Digesting Duck of Vaucanson
The Digesting Duck of Vaucanson

Vaucanson’s Duck was made of gilded copper and had over 400 moving parts, and could quack, flap its wings, drink water, digest grain, and defecate like a living duck. Although Vaucanson’s duck supposedly demonstrated digestion accurately, his duck actually contained a hidden compartment of “digested food”, so that what the duck defecated was not the same as what it ate. Although such “frauds” were sometimes controversial, they were common enough because such scientific demonstrations were needed to entertain the wealthy and powerful to attract their patronage. Vaucanson is credited as having invented the world’s first flexible rubber tube while in the process of building the duck’s intestines. Thanks to the open structure of its abdomen, the audience could even follow the digestive process from the throat to the sphincter which ejected a sort of green gruel.

Vaucanson provided his own description of his duck: …a duck, in which I show the mechanism of the viscera employed in the functions of drinking, eating, and digestion; the way in which all the parts required for these actions function together is imitated precisely: the duck extends its neck to take the grain out of the hand, it swallows it, digests it and expels it completely digested through the usual channels; all the movements of the duck, which swallows precipitously and which works its throat still more quickly to pass the food into its stomach, are copied from nature; the food is digested in the stomach as it is in real animals, by dissolution and not by trituration, as a number of physicists have claimed it; but this is what I intend to demonstrate and show upon that occasion. The material digested in the stomach passes through tubes, as it does through the entrails in the animal, to the anus, where there is a sphincter to allow its release.
I do not claim that this digestion is perfect digestion, able to make blood and nourishing particles to nurture the animal; to reproach me for this, I think, would show bad grace. I only claim to imitate the mechanics of this action in three parts which are: firstly, swallowing the grain; secondly, macerating, cooking, or dissolving it; thirdly, expelling it in a markedly changed state.
However, the three acts needed means, and perhaps these means will deserve some attention from the persons who would demand more accuracy. They will see the expedients that we used to make the artificial duck take the grain, suck it up into its stomach, and there, in a little space, build a chemical laboratory, to break down the main integral parts from it, and make it go out with no limit, through some convolutions of pipes, at an all opposed end of its body.
I think that attentive people will understand the difficulty to make my automaton perform so many different movements; for instance, when it rises up onto its feet, and it steers its neck to the right and to the left. They will know all the changes of the different fulcrums; they will even see that what acted as a fulcrum for a mobile part, becomes then mobile on this part which becomes fixed itself. At last, they will discover an infinity of mechanical combinations.

At the time, mechanical creatures were somewhat of a fad in Europe, but most could be classified as toys, and de Vaucanson’s creations were recognized as being revolutionary in their mechanical life-like sophistication. In spite of the considerable success of his three automata, Vaucanson tired of them quickly and sold them in 1743 to some entrepreneurs from Lyon, who toured with them for nearly a decade, showing them throughout Europe. Admission was always charged at these exhibitions and the automata appear to have brought in considerable revenue. Unfortunately, none of this survived to the present time. The musician automatons were lost or destroyed at the beginning of the 19th century, while the duck burnt in a museum in Krakow, Poland in 1889. For nearly 40 years, however, until his death in 1782, Vaucanson worked on the plan to make “an automaton’s face which would closely imitate the animal processes by its movements: blood circulation, breathing, digestion, the set of muscles, tendons, nerves, and so far…”

In 1741 Vaucanson was appointed by Cardinal André-Hercule de Fleury, chief minister of Louis XV, as inspector of the manufacture of silk in France. He was charged with undertaking reforms in the silk manufacturing process because at the time, the French weaving industry had fallen behind that of England. In 1742 Vaucanson promoted wide-ranging changes for the automation of the weaving process. Between 1745 and 1750, he created the world’s first completely automated loom, drawing on the work of Basile Bouchon and Jean Falcon, who he probably knew from his life in Lyon in the 1720s. However, Vaucanson’s loom was not successful, his proposals were not well received by weavers, who pelted him with stones in the street and eventually led to strikes and social unrest in Lyon.

A reconstruction of Vaucanson's loom (© CNAM, Paris)
A reconstruction of Vaucanson’s loom (© CNAM, Paris)

In the mechanism of Vaucanson’s loom, the hooks that were to lift the warp threads were selected by long pins or needles, which were pressed against a sheet of punched paper, that was draped around a perforated cylinder. Specifically, each hook passed at a right angle through an eyelet of a needle. When the cylinder was pressed against the array of needles, some of the needles, pressing against the solid paper, would move forward, which in turn would tilt the corresponding hooks. The hooks that were tilted would not be raised, so the warp threads that were snagged by those hooks would remain in place; however, the hooks that were not tilted, would be raised, and the warp threads that were snagged by those hooks would also be raised. By placing his mechanism above the loom, Vaucanson eliminated the complicated system of weights and cords (tail cords, pulley box, etc.) that had been used to select which warp threads were to be raised during weaving. Vaucanson also added a ratchet mechanism to advance the punched paper each time the cylinder was pushed against the row of hooks.

The idea behind the loom of Vaucanson was ingenious and technically sound, the prototypes also worked reasonably well. The problem, though, was that the metal cylinders were expensive and difficult to produce. Moreover, by their very nature, they could only be used for making images that involved regularly repeated designs. Obviously, by switching to new cylinders it is possible to produce designs of open-ended variety, but in practice, the switching over of cylinders proved too time-consuming and laborious. A few examples of the loom went into production, but it never really caught on and was soon discontinued.

Moreover, in 1741 Vaucanson commenced a project, to construct an automaton figure that simulated in its movements the animal functions, the circulation of the blood, respiration, digestion, the operation of muscles, tendons, nerves, etc. However, this was a too ambitious project. In 1762, he began to work on the more modest project of a machine, that would simulate just the circulation of the blood, using rubber tubes for veins. But this project, too, remained unrealized, because of inadequacies in contemporary rubber technology.

Jacques de Vaucanson was one of the significant inventors of the 18th century. In 1740 he demonstrated a clockwork-powered carriage. He is known as the builder of one of the first all-metal slide rest lathes (in 1750), the precursor of the machine tools that were developed during the 19th century. He was also one of the first, who use rubber in his machines. In 1770 he developed the first western chain drive, which is used in silk reeling and throwing mills.

Biography of Jacques de Vaucanson

Jacques de Vaucanson (1709-1782)
Jacques de Vaucanson (1709-1782)

Born as Jacques Vocanson (the particle de was added to his name in 1746 when he was made a member of the Académie des Sciences) on 24 February 1709 in the French town of Grenoble, he was the tenth child of the poor glove-maker Jacques Vocanson, born in Toulouse, and his wife Dorothée La Croix.

From an early age, Jacques quickly revealed his talent by fixing the watches and clock mechanisms of his neighbors, constructing a clock and a small automaton-priests that duplicated a few of the ecclesiastical offices. Therefore, his family initially wanted Jacques to become a clock-maker but was forced in 1715 to send him to study at the Jesuit school in Grenoble (now Lycée Stendhal), then in Collège de Juilly from 1717 to 1722. In 1725, influenced by his mother, Vaucanson took orders and joined the Les Ordre des Minimes in Lyon.

There is an interesting legend for Vaucanson from this period: It seems despite his interest in following a course of religious studies, Vaucanson retained his interest in mechanical devices, because in 1727, being just 18 years of age, he was given his own workshop in Lyon, and a grant from a nobleman to construct a set of machines. In the same 1727, there was a visit from one of the governing heads of Les Ordre des Minimes. Vaucanson decided to make some automata, which would serve dinner and clear the tables for the visiting politicians. However, one government official declared that he thought Vaucanson’s tendencies “profane”, and ordered that his workshop be destroyed.

Vaucanson's house, 51 rue de Charonne, 11th arrondissement, Paris
Vaucanson’s house, 51 rue de Charonne, 11th arrondissement, Paris, a photo from May 1889

Around 1730 a big influence on young Vaucanson appeared to apply Claude-Nicolas Le Cat (1700–1768), an eminent French surgeon and science communicator, who taught him anatomy, wherefore it became easier to construct devices that would mimic biological functions.

Jacques de Vaucanson married Madeleine Rey on 8 August 1753, in Paris. They had one daughter, Angélique Victoire de Vaucanson (7 November 1753 – 15 August 1820).

Toward the end of his life, Vaucanson collected his own and others’ inventions in what became in 1794 the Conservatoire des Arts et Métiers (Conservatory of Arts and Trades) in Paris; it was there that Joseph-Marie Jacquard found his automatic loom.

Jacques de Vaucanson died aged 73 years old on 21 November 1782 in his house, 51 rue de Charonne, 11th arrondissement, Paris.

Luigi Torchi

Acknowledgement to my correspondent Mr. Silvio Hénin, Milan, Italy, for his pioneering work on Torchi’s calculating machine.
Georgi Dalakov

The machine of the Italian Luigi Torchi from Milan was the first full-keyboard/direct multiplication machine in the world, moreover, it was the first practical keyboard calculator, as the earlier key-driven adding machine, described by the English engineer James White, seems to remain only on paper. Some 40 years will be needed for the direct multiplication machine to be reinvented by the American Edmund Barbour in 1872.

In 19th century, in Milan operated the R.I. Istituto Lombardo Veneto di Scienze, Arti e Lettere (Royal Imperial Lombard-Venetian Institute of Sciences, Arts and Letters), founded by Napoleon in 1797. Among the initiatives of this body, there was the institution of the Premj d’Industria (Prizes for Industry), awarded every year to those entrepreneurs and firms that achieved distinction in their areas of activity. In 1834 the Golden Medal was awarded to the local carpenter Luigi Torchi for the invention and construction of a Macchina pei Conteggi (counting machine). In charge of the assignment were the mathematician Gabrio Piola and the astronomer Francesco Carlini.

The Acts of the Solemn Distribution of Prizes include:
A young carpenter named Louigi Torchi… with no more than a tincture in the science of numbers, driven only by the strength of his ingenuity, imagined and performed with the petty means that he had at his disposal, pieces of wood and iron wire, a species of that machine which will perform the arithmetic operations, which first imagined Pascal, and after him few other mechanical and mathematical disciples…

In the following years, the arithmetic machine enjoyed a high local reputation, to the point that Torchi’s name was listed among the “Italians distinguished in science, literature, and the arts”.

Francesco Carlini was so enthusiastic about Torchi’s machine to ask the Government for an appropriation to build a more reliable metal model for the activities of the Brera’s Astronomical Observatory. On 6 May 1840, the Government confirmed the authorization with the following letter: “The Government authorizes the direction of the Imperial Royal Observatory to build the machine for counting, imagined by the carpenter Torchi, for the amount of 1000 Lire.” Carlini summoned Torchi: “I invite you to meet me in order to take the concert and fix the price”. At this point the story seems to come to an end, every trace of the machine is lost and we do not know if Torchi replied to Carlini’s letter or ever accepted the proposal, but it seems the improved metal exemplar was never built.

Thirty-two years later, in 1872, the famous Italian astronomer Giovanni Schiaparelli (who first described the canals on Mars) examined what remained of Torchi’s machine and found it “lacking many pieces, almost all the front part containing the device for the preparation [the keyboard] and the reading of the results is missing”. Schiaparelli concluded that “the completion and repair require not only to examine the machine to get an idea of the nature of its mechanism but also a long and expensive work of a clever craftsman”.

The ingenuity of Luigi Torchi revealed itself in another instance. In 1835 he invented a horse-less cart, exploiting the energy of the water stream, that moved along the canal towing-path, dragging the barge. An experiment was performed in October 1835 in the presence of H. M. the Viceroy: the boat and the barge went along a 212 meters stretch in 13 minutes and 25 seconds (0.948 Km/h). For this achievement, in 1837 Torchi was awarded another prize by the Institute, the Silver Medal. The fame of this invention spread as far as France, as it can be read in an article in the Mémorial encyclopédique et progressif des connaissances. Another known to us invention of Torchi is an improved “pendulum level” from 1858.

Almost nothing has been published on the mechanism of Torchi’s calculator. Most of the sources available just praise the machine, e.g. in Piola and Carlini’s report of the award: “It [the machine] responds to the touch of the keys [performing] the first three arithmetical operations with such a rapidity that the most experienced [human] computer cannot match its speed”, and also “it is especially of great help when several multiplications should be carried out, where a factor remains constant, as for proportionate shares, to reduce weights and measures of one country into another’s and it is useful to relieve the painful work of the [human] computers of tables.”

Only two documents propose a more thorough description of Torchi’s calculator, perhaps both by the same author; one is the hand-written Report of the Award Committee, and the second is an article published in the journal “La Fama” in 1836, where we can find the description of the operations and the only known picture of the machine (see the sketch below). The Report of the Award Committee includes: This combination of a constant and a variable number within certain limits, can be obtained by toothed sprockets and it is amazing to observe their particular configuration and bizarre teeth pattern. In spite of the poverty of the descriptions, two important features strike the attention: it was a “full-keyboard calculator” and it performed multiplication “instantaneously”.

The calculating machine of Luiggi Torchi
The calculating machine of Luigi Torchi (© Biblioteca Braidense, Milan, Italy)

Unless the fortuitous discovery of other documents or, almost impossible, of the machine or of parts of it, we cannot draw any definitive conclusion on the principle of operation of the Torchi’s contrivance and its innovative value. The lack of information may be attributable to Torchi himself, who would not have allowed any accurate inspection of his calculator to avoid possible plagiarism. In those times a craftsman was hardly protected from copies and Torchi’s bent on secrecy seems thus understandable.

The latest documented news about Luigi Torchi is the 1858 article about the pendulum level, written by Angelo Parrocchetti and Schiaparelli’s notes of 1872. If in nearly forty years since the prize, nothing more was recorded about the calculating machine and its inventor, one should think of a serious reason.

Why was the metal prototype never built? We can imagine that maybe the calculator was not as reliable as the enthusiastic descriptions bring us to understand?! Or maybe Torchi himself was not self-confident enough to work with different technology and with greater precision, and yet he was a carpenter, while the experience of a watchmaker or a scientific instruments maker was more appropriate?! Or maybe, finally, the inventor claimed more than the promised 1000 Lire?!

What happened to the prototype of his calculator? We know that it was probably exhibited in the Palace of Science and Arts of Brera from 1834 to 1837. It was then brought back to Torchi’s workshop, to be found again at the Brera Palace in 1872, when it was examined by Schiaparelli. We can imagine that, by that time very damaged and built with perishable material, it did not survive longer.

Strangely, almost nothing is known about this remarkable inventor—Luigi Torchi, except that he was born in 1812 and worked at the southern borders of the city of Milan (he lived in Borgo San Gottardo n° 1023, a neighborhood in Milan) as a mill carpenter. Torchi probably died before 1872. The exact details of his death have not been found in the city archives in Milan, as well as those relating to his origins, so probably Torchi was born and died far from the Lombard capital.


Literature:
1. S. Hénin, La macchina calcolatrice del falegname Luigi Torchi, PRISTEM Lettera Matematica, Luglio 2008
2. S. Hénin, Two Early Italian Key-driven Calculators, IEEE Annals of the History of Computing, 2010. n. 1

Jean-Baptiste Schwilgue

Acknowledgement to my correspondent Mr. Denis Roegel, Professor at Loria, France, for his important works on Schwilgué’s calculating machines.
Georgi Dalakov

Portrait of Jean-Baptiste Schwilgué
Jean-Baptiste Schwilgué (1776-1856)

In 1844 the French engineer Jean-Baptiste Schwilgué from Strasbourg, together with his son Charles-Maximilien, patented a key-driven calculating machine, which seems to be the third key-driven machine in the world, after these of James White and Luigi Torchi, but was certainly the first popular keyboard calculator. Similar machines will be invented and manufactured by many inventors in the next 60 years. Moreover, several years later Schwilgué devised a bigger specialized calculating machine.

Additionneur Schwilgué (Schwilgué’s Adder)

Before starting the creation of his calculating machines, Schwilgué made a number of preliminary studies years before, such as a design of the computus mechanism (Easter computation) in 1816, of which he built a prototype in 1821. This mechanism, whose whereabouts are now unknown, could compute Easter following the complex Gregorian rule. The astronomical part is unusually accurate: it indicates leap years, equinoxes, and much more astronomical data.

Schwilgué himself was trained as a clockmaker, but also became a professor of mathematics, weights and measures controller, and an industry man, whose particular focus was on improving scales. After the completion of his famous astronomical clock of Strasbourg Cathedral in the early 1840s and following a change in the French patent laws, Schwilgué, with or without his son, patented several inventions, including the above-mentioned small adding machine. This machine appeared in the 1846 catalog of Schwilgué’s tower clock company, but was most probably devised some 10 years ago, in the middle 1830s.

The key adder of Schwilgué, a device from 1846 ((© Historical Museum Strasbourg)
The key adder of Schwilgué, a device from 1846, carrying the Nr. 15 (© Historical Museum Strasbourg)

As of now, several copies of the machine are known: one is in a private collection (Boutry-Ungerer family), one (dated 1846) in the Strasbourg Historical Museum (the machine (see the upper image) is in a poor state and carries the Nr. 15), and one (dated 1851) is in the collections of the Swiss Federal Institute of Technology in Zurich (see the lower images).

The calculating machine of Schwilgué in Zurich (Courtesy of the Swiss Federal Institute of Technology)
The calculating machine of Schwilgué in Zurich (Courtesy of the Swiss Federal Institute of Technology)
A side view of the Schwilgué's machine in Zurich (Courtesy of the Swiss Federal Institute of Technology)
A side view of Schwilgué’s machine in Zurich (Courtesy of the Swiss Federal Institute of Technology)

Like other machines of this kind (so-called single-column adders), the device of Schwilgué was intended to add a single digit at a time, i.e. the unit column is entered first, then the tens, the hundreds, the thousands, and so on, certainly rather cumbersome task (as every partial sum had to be recorded on paper and the sum eventually performed), which greatly limits the usefulness of such devices.

The inside of calculating machine of Schwilgué in Zurich (Courtesy of the Swiss Federal Institute of Technology and Mr. Denis Roegel)
The inside of calculating machine of Schwilgué in Zurich (Courtesy of the Swiss Federal Institute of Technology and Mr. Denis Roegel)
Under the top plate of calculating machine of Schwilgué (Courtesy of the Swiss Federal Institute of Technology and Mr. Denis Roegel)
Under the top plate of calculating machine of Schwilgué (Courtesy of the Swiss Federal Institute of Technology and Mr. Denis Roegel)

In closed status, the machine is a box with nine numbered keys, an opening showing two or three digits in two parts, and two knurled knobs. It is 25.5 cm long, 13.6 cm wide, and 9.5 cm tall (without the knobs), weight 3.3 kg. The inside of one of the machines is almost identical to the patent drawing (see the next figure).

The patent drawing of the calculating machine of Schwilgué
The patent drawing of the small calculating machine of Schwilgué

Schwilgué’s machine has three main functions: addition, carrying, and setting.

The upper figure shows figures I, II, III, and IV of Schwilgué’s patent. Figure IV shows how the keys operate. Each key can move downward by an amount corresponding to its value and moves the wheel G, but only when the key is released. (Schwilgué stated, however, that this can be changed, to work on key pressing). This wheel meshes with wheel H (horizontal in Figure III), and the unit wheel moves counterclockwise by as many digits as the pressed key. The unit wheel is the wheel on the right of Figure II. It contains each digit three times.

The units and tens wheels can be set using the knurled knobs, so that before an addition the openings would show 00. On the Zurich machine, resetting the wheels is made easier by pins located under the wheels. When the knobs are pushed downwards, R or U disengage, but the pins are put in the way of stops so that one merely has to turn the knobs until it is no longer possible.

It may seem surprising to see such an invention, long after more sophisticated calculating machines such as Thomas’s Arithmometre (1820), or even the Roth machine (1841). It must, however, be understood that Schwilgué’s machine was never meant as a general adding machine.

Schwilgué, who had obtained a number of patents since the 1820s, was no doubt well aware of Thomas’s machine and other general calculating machines. We know, for instance, that Schwilgué had a copy of the description of Roth’s machines, as well as a copy of a history of calculating instruments published in 1843 by Olivier. It is possible that these articles were an incentive for Schwilgué to build his calculating machine, or they may have been part of his research for his own machine.

Unlike that of the general-purpose calculating machines, Schwilgué’s purpose was to ease a particular operation, the hand checking of addition. In these cases, only small values were handled, and Schwilgué didn’t bother to build a machine with 10-digit inputs, although it could probably have been done with his carrying mechanism. Instead, Schwilgué could see that the existing machines, although powerful in principle, were of little use for everyday accounting. Schwilgué’s machine was designed to fill that gap by using keys to input numbers. Schwilgué could see their potential, even though he never claimed to have invented the keyboard, as keyboards already existed on musical instruments.

The calculating machine of Schwilgué has several other interesting features (some are mentioned only in the patent):
The one, that has already been mentioned, is the use of a clock escapement-like way of adding the carry, although Schwilgué never qualified it that way. This feature seems also present on Schilt’s machine.

The patent drawing also shows that the keyed figures are only taken into account when the keys are released. However, Schwilgué stated explicitly that both are possible, either upon pressing or upon release and that the patent covers both.

Schwilgué also mentioned an interesting feature which he called “tout ou rien” (all or nothing). Besides the name, which alludes to binary logic and may have been borrowed from Julien Le Roy in the context of repeating watches that had to ring all chimes or none, it was here an optional feature ensuring that a digit was only taken into account when the key had been completely pressed. However, according to Schwilgué, this was not really needed as one learned quickly to operate the machine and not to make mistakes. A similar safety measure was introduced as late as 1913 in the ill-fated E-model of the Comptometer of Dor Felt. On that, an automatic blocking device prevents errors and forces the operator to repeat pressing a key that was not adequately depressed.

Schwilgué’s Calculator of Sequences

It is known also, that in the middle 1840s Schwilgué constructed a bigger specialized calculating machine, a solid brass device with 36 result wheels, kept now in the collection of Historical Museum Strasbourg (see the lower photo). This machine was advertised at “300 to 400” francs in 1846 (about three months’ salary for a common laborer of the period), and at “400 to 500” francs in 1847, but it seems unlikely that any was sold because it was too specialized.

Schwilgué's Calculator of Sequences (© Historical Museum Strasbourg)
Schwilgué’s Calculator of Sequences (© Historical Museum Strasbourg)

This specialized machine had a single purpose—to calculate multiples of some value using additions, and on 12 digits (i.e. the machine works with 12-digit integers, and it computes their multiples in sequence). In the 1830s and 1840s Schwilgué made several gear-cutting machines, which position is given by angles at regular intervals. To be able to calculate the angles with a large accuracy, Schwilgué wanted to compute the fractions 1/p, 2/p, 3/p…, p/p on 12 places. Thus the output of the calculating machine (values were copied on paper) can be used as an input for the gear-cutting machine.

The machine is a weight-driven device with a modular design and includes 12 almost identical blocks (one for each place), a command arbor, and a command block. A crank is provided (normally not used), for rewinding the machine and clearing carries.

Once the machine is rewound, a detent is shifted and the mechanism does one addition, then stops. This operation is repeated until the machine is rewound. After each computation, the values are copied on paper.

The command block is similar to a striking clock with two 54-teeth wheels, a pinion of 9 leaves, a second wheel of 47 teeth, and a double threaded worm. The weight is attached to a string that is wound around a drum driving one of the 54 teeth wheels, and this wheel meshes with the second 54 teeth wheel, as well as with the pinion. The second 54 teeth wheel drives the command arbor. The pinion drives the second wheel and the worm which leads to a brake and an arm stopped by the detent. When the detent is released, the arm is freed and the mechanism turns, until the detent again meets a notch on the 54 teeth wheel of the command arbor. There is also a notch in the other 54 teeth wheel, and the two work together as in common striking clocks.

Schwilgué's bigger calculating machine (© Denis Roegel)
Schwilgué’s bigger calculating machine (© Denis Roegel)

When the command block is triggered, the 54 teeth wheels perform one turn and so does the command arbor. This arbor is tangent to the 12 blocks and carries 24 arms, organized helically, two per block. It is a natural consequence of the relative position of the blocks, of the arbor, and of the need to sequentialize the additions at each place: first the units, then the tens, etc. The arrangement of the computing blocks dictates the structure of the command arbor.

Each block displays three digits and the three sets of 12 digits represent three 12-digit numbers. One is a simple counter, and it will show 000000000000, 000000000001, 000000000002, etc. The other is a constant and will never change during an operation. It will for instance store a value such as 076923076923 for 1=13. The third one will merely show the multiples of the constant. There are therefore two independent, but synchronous, functions: the counter, and the multiple. These functions are synchronous so that one value (the counter) could serve as an entry to the second (the multiple). In the case of the counter, the machine has to add one to the units, and to propagate the carries. In the case of the constant, the constant must be added to the stored sum, and carries have to be propagated. Each of these two functions is obtained by two arms of the command arbor. One arm is for incrementing the counter, the other is for adding one digit of the constant to one digit of the sum.

The prototype of the machine was probably constructed in 1844, but the earliest known plans are from 1846. Later the machine seems to have slightly evolved and the above-mentioned device follows plans dated 1852.

Schwilgue’s bigger machine should be remembered as an exceptional example of his engineering genius and as a rare example of an early specialized calculator, full of subtle features.

Biography of Jean-Baptiste Schwilgué

Jean-Baptiste Schwilgué, portrait by Gabriel-Christophe Guérin from 1843
Jean-Baptiste Schwilgué, portrait by Gabriel-Christophe Guérin from 1843

Jean-Baptiste Sosime Schwilgue was born on 18 Dec. 1776 in Strasbourg, France, in a house located at the intersection of rue Brûlée and rue de la Comédie. He was the second son of the civil servant François-Antoine Schwilgue (1749-1815) and Jeanne Courteaux (1750-1784). François-Antoine was native from Thann in Grand Est (Schwilgue (or Schwilcke) family settled in Thann centuries ago), and came to Strasbourg to serve as valet de chambre in l’Intendance royale d’Alsace à Strasbourg. Jeanne Courteaux was native from de Solgne (Moselle). Jean-Baptiste had an elder brother, Charles Joseph Antoine, born on 10 Oct. 1774, who became a doctor and professor of medicine in Paris, but died only 33 years old on 7 Feb. 1808. His mother Jeanne also died young on 13 April 1784, when Jean-Baptiste was only 8, and his father married second time in June 1785 to Marie-Anne Kauffeisen (1746-1809).

As a boy, Jean-Baptiste showed great interest in mechanics, and with the help of the simplest tools available to him, he produced various machines and instruments, by which he made special improvements that he had conceived. He was very fond of looking at the Strasbourg Cathedral astronomical clock, made in the 1570s by Konrad Dasypodius (1532-1600), and often stood for hours before it, thinking about putting this highly sophisticated watch (which at the time was very badly or not at all functional anymore), again in the workable state.

In 1789, after the outbreak of the French Revolution, the father of Jean-Baptiste lost his position and moved from Strasbourg to Sélestat (Schlestadt), Alsace (he died there on 14 Feb. 1815), where Jean-Baptiste continued his studies, devoting himself, especially to mathematics. Besides his studies, he learned the art of watch-making, entering a watch-making shop as an apprentice.

Anne Marie Thérèse Hihn-Schwilgué
Anne Marie ‘Thérèse’ Hihn-Schwilgué

In 1796 Jean-Baptiste became self-employed and married Anne Marie “Thérèse” Hihn (1778-1851, see the nearby image), a daughter of the confectioner Charles Hihn and Thérèse Baldenberger, on 25 April in Sélestat.

Eight children, three boys and five girls, were born from this marriage: Marie Thérèse (1797-1848), Jean-Baptiste (1798-1855), Charles-Maximilien (1800-1861), Françoise (1802-1806), Louise (1804-1864), Adélaïde (Adèle) (1806-1850), Sébastien “Alexandre” (1811-1836), and Marie “Clémentine” Emilie (1812-1878).

In 1807 Jean-Baptiste was appointed official at the district’s office of Sélestat (he was the town clockmaker and verifier of weights and measurements), and also a professor of mathematics at the local college, which he retained until he moved to Strasbourg in 1827. In the meantime, he was always occupied with the Strasbourg astronomical clock, and around 1820 he invented a mechanical church calendar with a precise determination of the movable festivals according to the Gregorian. This church calendar, which he had carried out in a smaller model (15×20 cm), he brought to the French Academy of Sciences in 1821, and even presented it personally to King Louis XVIII.

The third astronomical clock of Strasbourg Cathedral
The third astronomical clock of Strasbourg Cathedral

The masterpiece of Schwilgué’s life was the third astronomical clock of Cathédrale Notre-Dame de Strasbourg. As early as 1827, Schwilgué had submitted to the city council of Strasbourg a report on the condition of the clock, together with three proposals on the repair of the same; the first two, while retaining certain parts of the old clock, and the third, for a completely new clock. But it was not until 1836, after lengthy negotiations, that the city council of Strasbourg came to a final decision on the restoration of the clock, and was only approved by the higher administrative authority at the beginning of 1838. As the agreement was signed in May 1838, in June, Schwilgué set to work on the new clock. Together with his son Charles and his apprentices and later partners—brothers Albert and Theodor Ungerer, he was able to finish this assignment in July 1842. On 2 October 1842, on the occasion of the 10th Congress of Sciences in France in Strasbourg, the clock was set in motion for the first time, and Schwilgué was congratulated on all sides for the great success of the work which he had undertaken. In November 1842, a large banquet was held in his honor, and on 31 December 1842, a grand feast with a solemn parade through the town to commemorate the fortunate prosperity of the work erected by Schwilgué.

In 1835 Schwilgue was appointed Knight of the Legion of Honour and in 1853 on a report of the Minister of Education and Religious Affairs he obtained the rank of Officer of the Legion of Honour.

Jean-Baptiste Sosime Schwilgue died 79 years old on 5 December 1856 in Strasbourg (see below the gravestone of Jean-Baptiste Schwilgué and his wife Anne Marie “Thérèse” Hihn). His son Charles inherited his father in the workshop (and in 1857 wrote a book about his famous father, named Notice sur la vie, les travaux et les ouvrages de mon pere, J. B. Schwilgue), but in 1858 he was paralyzed by a stroke, and died three years later.

The gravestone of Jean-Baptiste Schwilgué and his wife Anne Marie "Thérèse" Hihn in Strasbourg
The gravestone of Jean-Baptiste Schwilgué and his wife Anne Marie ‘Thérèse’ Hihn in Strasbourg

Literature:
Denis Roegel: An Early (1844) Key-Driven Adding Machine, IEEE Annals of the History of Computing, vol. 30, №1, pp. 59-65, January-March 2008)

Dubois D. Parmelee

Каждый мечтает изменить мир, но никто не ставит целью изменить самого себя.
Лев Николаевич Толстой

In 1850 Dubois D. Parmelee, a 20-year-old student at New Paltz Academy (later the State University of New York), patented a calculator, which seems to be the fourth key-driven adding machine in the world (after the machines of James White, Luigi Torchi, and Jean-Baptiste Schwilgué), thus putting the foundation of the US key-driven calculating machines industry, which will become the leading in the world industry some 40 years later.

Parmelee was an inventive young man, who devised his Machine for Making Calculations in Figures while in the New Paltz Academy, driven probably by the need to facilitate the tedious mathematical calculations. Unfortunately, nothing except the patent application survived to the present, even the patent model was lost (for most of the 19th century, US Patent Office required inventors to submit a model with their patent applications. Inventors placed great importance on their models and viewed a well-executed model as the key element in obtaining a patent.)

Like other machines of this kind (so-called single-column adders), the device of Parmelee was intended to add a single digit at a time, i.e. the unit column is entered first, then the tens, the hundreds, the thousands, and so on, certainly a rather cumbersome task (as every partial sum had to be recorded on paper and the sum eventually performed), which greatly limits the usefulness of such devices.

The patent drawing of the machine of Parmelee
The patent drawing of the calculator of Dubois D. Parmelee

The calculator of Parmelee is a simple apparatus for making additions of long columns of figures by means of a movable index or register acted upon by keys of a fingerboard (keyboard). The device (see the lower patent drawing from US patent No. 7074) has nine keys, which are numbered from 1 to 9 and have increasing heights.

The motion from the keys is transferred to the stick (graduated rule) B in the back part. This stick has in his front part teeth, which are engaging with the two tongues m and k (see figure 2 from the patent drawing). The sidebar of the stick is graduated and numbered in such a way, that one tooth corresponds to one division. On pressing a key, lever E will raise the tongue k to so many divisions, according to the digit, written on the key. Then the lever will be returned to the starting position by means of the spring n. When entering the numbers (or when the stick is raised to the uppermost position), the operator can see the number in the sidebar and then pulls by means of the two ropes p the two tongues and the stick will fall down through the box to its stop ready to be again raised.

It seems that if the machine of Parmelee was ever used to add with, the operator would have to use a pussyfoot keystroke, otherwise, the numeral bar would overshoot and give a wrong result, as no provision was made to overcome the momentum, that could be given the numeral bar in an adding action.

In his patent description, Parmelee proposed some improvements, the most important one was to improve the visualization, including in the construction gear wheels and strips.

In August 1850 the calculator of Parmelee was presented in the American popular science magazine Scientific American (see the image below):

The calculator of Parmelee in August 03, 1850, issue of Scientific American magazine
The calculator of Parmelee, as presented in the 3 August 1850, issue of Scientific American magazine

Biography of Dubois D. Parmelee

Dubois (Du Bois) Duncombe Parmelee, a known at his time chemist and inventor, was born on 15 August 1829, in Redding, a small town in Fairfield County, Connecticut. He was the son of Ezra Parmelee and Mary Duncombe Parmelee. Ezra Parmelee (born 5 March 1796) descended from one of the area’s first colonial settlers, John Parmelee (1615-1690) from East Sussex, England, who arrived at New Haven in July 1639.

After attending a private school in Boston, Parmelee enrolled in New Paltz Academy (now the State University of New York at New Paltz), where he received in the second half of the 1850s a degree in medicine and chemistry. He never worked as a physician however but devoted his life primarily to experimental chemistry.

After his graduation, Parmelee worked in the rubber industry in Salem, Mass, (in the US Census 1860 records he is listed as Dubois D. Parmalee, chemist, 29 y.o., living in 2nd Ward of Salem) where he invented the cold process of manufacturing rubber and had a rubber business until the Goodyear invention ran out and rubber prices dropped. Around 1861 he settled in New York and was listed in the New York City directories of the period 1 May 1862, through 1 May 1873, as a chemist. Later Parmelee worked for New York Belting and Packing Co. as a consulting chemist and took part in producing the first aluminum in the USA.

Parmelee was one of the most active members of the American Institute of the City of New York and several exhibits of his inventions have been made there. He joined the American Institute in 1861, and he was listed as an annual member in the membership list of 1868, with his profession given as Practical Chemist.

Parmelee was a holder of quite a few patents, primarily in the fields of rubber manufacturing and implementation (pat. №№ US24401, US26551, US48993, US48993, US187302, US146092, etc.) It seems his most important invention was the suction socket for artificial limbs (U.S. Utility Patent No. 37637), some 80 years before it received general acceptance. Parmelee fastened a body socket to the limb with atmospheric pressure, thus being the first inventor to do so with satisfactory results.

Dubois Parmelee married Rosina (Benisia) Gloward (b. 1836) in New York City on 7 October 1857, but apparently, they had no children.

Dubois Duncombe Parmelee died of heart failure on 15 April 1897, in New York.

James White

Acknowledgement to my correspondent Mr. Denis Roegel, Professor at Loria, France, for his unveiling work on White’s adding machine.
Georgi Dalakov

In 1822, James White, an English civil engineer, and prolific inventor published a fascinating 394-page book with the long name A New Century of Inventions: Being Designs and Descriptions of One Hundred Machines, Relating to Arts, Manufactures, and Domestic Life. Remarkably, among the 100 machines, described by White, there is a unique adding machine, which is the first key-driven calculator in the world.

In the early 1820s, late in his life (in the preface White mentions his declining health and approaching mortality), he decided to publish most of (or at least the 100 implied in the title) his inventions. It was, obviously a work of some importance, indicated by the names of eminent engineers, who subscribed to it, like Charles Babbage (the creator of Differential Engine and Analytical Engine, Bryan Donkin, Jacob Perkins, William Fairbairn, and others. The same year the book ran to a second edition, and even in our time it also has several reprints on paper and an Ebook version.

We don’t know when exactly White devised his amazing keyboard adder, but in any event, it was long before the next known at the moment keyboard calculators of Luigi Torchi (1834) and Jean-Baptiste Schwilgué (1844). Most probably White invented the machine while in France in the early 1800s (he lived in Paris from the end of 1792 until February 1815), where he had the opportunity to study the machines of some famous French inventors, kept in Paris museums (e.g. Musée des Arts et Métiers), like Pascaline of Blaise Pascal, automata of Jacques de Vaucanson, etc. Sure enough, Vaucanson was mentioned twice in the book, regarding his chaîne Vaucanson, which White planned to use in the endless geering chain of his calculator.

The title page of New Century of Inventions of James White
The title page of New Century of Inventions of James White, Manchester 1822

Obviously, James White was related to and greatly influenced by the prominent British statesman and scientist Charles Stanhope, who had a family seat in Chevening, Kent, where White lived in the early 1790s. Charles Mahon, 3rd Earl Stanhope, is the subject of another article in this humble site, describing his mechanical calculating devices and logic machine. James White mentioned Stanhope three times in his book, as my noble friend, and my noble Patron. In the description of the adding machine, there is a paragraph, referring to Stanhope:
I would just repeat, that I have not attempted here an arithmetical machine in general; but a Machine fit for the daily operations of the counting-house: by which to favour the thinking faculty, by easing it of this ungrateful and uncertain labour. Had I been thus minded, I could have gone further, in a road which has been already travelled by my noble friend the late Earl Stanhope, (then Lord Mahon) but I took a lower aim; intending in the words of Bacon—”to come home to men’s business and bosoms.”

The adding machine of White is a single-column adder (i.e. it was intended to add a single digit at a time, as the unit column is entered first, then the tens, the hundreds, the thousands, and so on, certainly a rather cumbersome task (as every partial sum had to be recorded on paper and the sum eventually performed), which greatly limits the usefulness of such devices.) with very interesting construction, which cannot be found in the later machines. The motion from keys to the calculating mechanism and result dial is transferred by means of a pulley, that presses on an endless gearing chain. The chain is pushed out of its regular circular path by the depression of a key. This action causes the result wheel to turn an amount equal to the length of the key being pushed (the “1” key being 1 unit long, the “2” key, 2 units, etc).

The principle of carrying is shown in Figure 3 (see the image of the first plate below). One wheel carries a pin that, when rotated, advances another wheel by one tooth. The position of the moving wheel is secured by the spring wafer ED.

This construction of the machine makes it possible to type in several digits at the same time. However, there is no way to ensure that the keys are pressed to the bottom, which is something that some later machines will be able to enforce, for instance, by adding the digits only upon the release of a key but not upon its pressing.

A very interesting detail of White’s calculator is a kind of “floating point” mechanism, in that the motion of wheel B (see figure 1 below) rotates the square shaft B G, on which lies a sliding wheel l. This wheel can be moved to the appropriate position, should we add units, tens, hundreds, and so on, or other units (e.g. monetary, like farthings, pence, shillings, and pounds), such as those in use at the time of White.

As White did not patent his adding machine, and no account from his contemporaries survived for this remarkable contrivance, we can assume that the device does not appear to have been anything except a paper design and even a working prototype has not been made.

Let’s see White’s detailed description and illustrations of his adding machine (an excerpt of his book, pages 343–348, and plates 42 and 43):

***
OF AN ADDING MACHINE,
Or Machine to Cast up large Columns of Figures.

This Machine is not, generally, an arithmetical Machine. It points lower: and therefore promises more general utility. Though less comprehensive than machines which perform all the rules of arithmetic, it is thought capable of taking a prominent place in the counting-house, and there of effecting two useful purposes—to secure correctness; and thus, in many cases, to banish contention. It is represented in figs. 1, 2, 3, and 4 of Plate 42, and in figs. 3 and 4 of Plate 43.

There are two distinct classes of operations that may be noticed in this Machine: the one that does the addition, properly speaking; and the other that records it by figures, in the very terms of common arithmetic. The first operation is the adding: which is performed by means of an endless gearing chain, stretched round the wheels A B C D, (fig. 1) and over the two rows of smaller pulleys a b c d e f g h i; where, observe, that the chain is bent round the pulley A, merely to shorten the Machine, as otherwise the keys 1 2 3, &c. to 9, might have been placed in a straight line, and thus the bending of the chain have been avoided.

The chain, as before observed, geers in the wheels B and D, which both have ratchets to make them turn one way only. Now, the keys 1 2, &c. have pulleys at their lower ends, which press on the aforesaid chain more or less according to the number it is to produce, and the depth to which it is suffered to go by the bed on which the keys rest, when pressed down with the fingers. Thus, if the key 1 be pressed, as low as it can go, it will bend the chain enough to draw the wheel B round one tooth—which the catch E will secure, and which the wheel C will permit it to do by the spring F giving way. But when the key 1 is suffered to rise again, this spring F will tighten the chain by drawing it round the pulleys A and D, thus giving it a circulating motion, more or less rapid, according to the number of the key pressed. Thus, the key 5 would carry five teeth of the wheel B to the left; and the catch E would fix the wheel B in this new position: after which the spring T would tighten the chain in the same direction and manner as before. It is thus evident, that which-ever key is pressed down, a given number of teeth in the wheel B, will be taken and secured by the catch E; and, afterwards, the chain be again stretched by the spring F. It may be remarked, that, in the figure, all the keys are supposed pressed down: so as to turn the wheel B, a number of teeth equal to the sum of the digits 1, 2, 3—to 9. But this is merely supposed to shew the increasing deflexion of the chain, as the digits increase: for the fact can hardly ever occur. We draw from it, however, one piece of knowledge—which is, that should the eye, in computing, catch several numbers at once on the page, the fingers may impress them at once on the keys and chain; when the result will be the same as though performed in due succession.

Plate 42 of White's New Century of Inventions
Plate 42 of White’s New Century of Inventions

Thus then, the process of adding, is reduced to that of touching (and pressing as low as possible) a series of keys, which are marked with the names of the several digits, and each of which is sure to affect the result according to it’s real value: And this seems all that need be observed in the description of this process. It remains, however, to describe the 5th. figure, which is an elevation of the edge of the keyboard, intended to shew the manner in which the two rows of keys are combined and brought to a convenient distance, for the purpose of being easily fingered.

We now come to the other part of the subject—that of recording the several effects before-mentioned. The principle feature in this part, is the System of carrying, or transferring to a new place of figures, the results obtained at any given one. This operation depends on the effect we can produce by one wheel on another, placed near it, on the same pin; and on the possibility of affecting the second, much less than the first is affected: Thus, in fig. 3 and 4, (Plate 42,) if A be any tooth of one such wheel, placed out of the plane of the pinion B, it will, in turning, produce no effect upon that pinion: but if we drive a pin (a) into the tooth A, that pin will move the pinion B one tooth (and no more) every time this pin passes from a to b. And if we now place a second wheel (F) similar to A, at a small distance from it, so as to geer in all the teeth of the pinion B, this latter wheel will be turned a space equal to one tooth, every time the pin a passes the line of the centres of the wheel and pinion A B, (say from a to b.) It may be added, likewise, that this motion, of one tooth, is assured by the instrument shewn at E D, which is called in French a tout ou rien, (signifying all or nothing) and which, as soon as the given motion is half performed, is sure to effect the rest: and thus does this part of the process acquire, likewise, a great degree of certainty—if indeed, certainty admits of comparison.

It is then, easy to perceive, how this effect on the different places of figures is produced; and it is clear, that with the chain motion just described, it forms the basis of the whole Machine. There is, however, one other process to be mentioned, and as the 2nd. figure is before us, we shall now advert to it. In adding up large sums, we have sometimes to work on the tens, sometimes on the hundreds; which mutations are thus performed: The wheel B, (fig. 2) is the same as that B, fig. 1; and it turns the square shaft B G, on which the wheels k l slide. The wheel l is to our present purpose. It is now opposite the place of shillings; but by the slide m, it can be successively placed opposite pounds, tens, hundreds, &c. at pleasure: on either of which columns, therefore, we can operate by the chain first described—the wheel B being the common mover.

Plate 43 of White's New Century of Inventions
Plate 43 of White’s New Century of Inventions

We shall now turn to figs. 3 and 4 of Plate 43, which give another representation of the carrying-mechanism, adapted especially to the anomalous carriages of 4, 12, and 20, in reference to farthings, pence, shillings, and pounds, and then following the decuple ratio.

In fig. 3, k l represent the two acting wheels of the shaft B G, fig. 2; the latter dotted, as being placed behind the former; these wheels, however, are not our present object, but rather the carrying system before alluded to; and described separately, in fig. 3 of Plate 42. A, in figures 3 and 4 (of Plate 43) is the first wheel of this series. It has 12 teeth with three carriage-pins (or plates) a, which jog the carrying pinion B, at every passage of 4 teeth; thus shewing every penny that is accumulated by the farthings. This is so, because the farthings are marked on the teeth of this first wheel in this order-1, 2, 3, 0; 1, 2, 3, &c. and it is in passing from 3 to 0, that this wheel, by the carriage-pinion B, jogs forward the pence wheel C one tooth: But this pence wheel is divided into 12 numbers, from 0 to 11; and has on it only one carrying-pin (or plate) b; so that, here, there is no effect produced on the third wheel D, until 12 pence have been brought to this second wheel C, by the first, or farthing wheel A. Now, this third wheel D, is marked, on it’s twenty teeth, with the figures 0 to 19, and makes, therefore, one revolution, then only, when there have been twenty shillings impressed upon it by twenty jogs of the carriage-pin b, in the second wheel C. But when this wheel D has made one whole revolution, it’s single carriage-pin c, acting on the small carriage-pinion, like that c d, (but not shewn) jogs forward, by one tooth, the wheel E, which expresses pounds; and having two carriage-pins e f, turns the wheel called tens of pounds, one tooth for every half turn of this wheel E: and as, on all the succeeding wheels, to the left from E–(see fig. 2, Plate 42) there are two sets of digits up to 10, and two carriage-pins; the decuple ratio now continues without any change: and thus can we cast up sums consisting of pounds, shillings, pence, and farthings, expressing the results, in a row of figures, exactly as they would be written by an accountant. The opening, through which they would appear, being shewn in fig. 1, at the point w, corresponding with the line x y of fig. 2 in the same Plate.

I shall only remark, further, that the figures 3 and 4 in Plate 43, are of the natural size, founded, indeed, on the use of a chain that I think too large; being, in a word, the real chain de Vaucanson, mentioned in a former article: and that the figures of Plate 42 are made to half these dimensions, in order to bring them into a convenient compass on the Plate.

I would just repeat, that I have not attempted here an arithmetical machine in general; but a Machine fit for the daily operations of the counting-house: by which to favour the thinking faculty, by easing it of this ungrateful and uncertain labour. Had I been thus minded, I could have gone further, in a road which has been already travelled by my noble friend the late Earl Stanhope, (then Lord Mahon) but I took a lower aim; intending in the words of Bacon—”to come home to men’s business and bosoms.”

***
End of excerpt from book A New Century of Inventions of James White

Biography of James White

Most of the scarce information, available for the life of James White, comes from biographical statements in his only book A New Century of Inventions.

James White was born in 1762 in Cirencester, Gloucestershire (located some 150 km northwest of London), at that time a thriving market town, at the center of a network of turnpike roads with easy access to markets for its produce of grain and wool. Interestingly, no record of his birth is to be found in the Church Baptismal Register there, so his parents may have been nonconformists (or even (judging by his too-common English name and surname, and lack of information about his parents) that he was born out of wedlock son of a nobleman, who wanted to remain in secret).

White’s father gave free rein to his son’s early predilection for mechanics as is illustrated by the fact that when the boy was only about eight years of age and still at school he invented quite an ingenious mouse trap. As James White stated:
Should any reader then enquire what were my first avocations? The answer would be, I was (in imagination) a Millwright, whose Water-wheels were composed of Matches. Or a Woodman, converting my chairs into Faggots, and presenting them exultingly to my Parents: (who doubtless caressed the workman more cordially than they approved the work.) Or I was a Stone-digger, presuming to direct my friend the Quarry-man, where to bore his Rocks for blasting. Or a Coach-maker, building Phaetons with veneer stripped from the furniture, and hanging them on springs of Whalebone, borrowed from the hoops of my Grandmother. At another time, I was a Ship Builder, constructing Boats, the sails of which were set to a side-wind by the vane at the mast head; so as to impel the vessel in a given direction, across a given Puddle, without a steersman. In fine, I was a Joiner, making, with one tool, a plane of most diminutive size, the [relative] perfection of which obtained me from my Father’s Carpenter a profusion of tools, and dubbed me an artist, wherever his influence extended. By means like these, I became a tolerable workman in all the mechanical branches, long before the age at which boys are apprenticed to any: not knowing till afterwards, that my good and provident Parent had engaged all his tradesmen to let me work at their respective trades, whenever the more regular engagements of school permitted.
Before I open the list of my intended descriptions, I would crave permission to exhibit two more of the productions of my earliest thought—namely, an Instrument for taking Rats, and a Mouse Trap: subjects with which, fifty years ago, I was vastly taken; but for the appearance of which, here, I would apologize in form, did I not hope the considerations above adduced would justify this short digression. If more apology were needful… Emerson himself describes a Rat-trap: and moreover, defies criticism, in a strain I should be sorry to imitate: my chief desire being to instruct at all events, and to please if I can: without, however, daring to attempt the elegant PROBLEM, stated and resolved in the same words—”Omne tulit punctum, qui miscuitutile dulci.”

We know nothing of White’s education, but he obviously was apprenticed to several trades, because he mentioned: my good and provident Parent had engaged all his tradesmen to let me work at their respective trades.

White says that he brought out one of the first inventions he carried into real practice on coming to manhood about 1782, at the request of the late Doctor Bliss, of Paddington. It was a perpetual wedge machine (first constructed as a crane, see the lower drawing from the book). This was a concentric wheel and axle, the wheel having 100 teeth and the axle one tooth less, thus obtaining a great advantage.

James White's crane from 1782
James White’s crane from 1782

In 1788, giving his address at Holborn London, White took out a British patent No. 1650, for a number of mechanical devices, not all original, e.g. the Chinese windlass is one of them.

In 1792 White modified the inclined disc treadmill-driven crane for wharfs (see the image below) by refinement of having compartments situated on the disc at leverage proportional to the weight to be lifted. He submitted a model of the crane to the Society of Arts and was rewarded with a premium of 40 guineas or a gold medal.

White's treadmill-driven crane for wharfs from 1792
White’s treadmill-driven crane for wharfs from 1792

At the end of 1792, White departed to Paris, France, where he remained for more than 20 years, making many inventions and starting several business affairs, most of them not very successful.

The first “French” invention of White was a micrometer, based on differential movement. In 1795 White got another patent, this time for a Serpentine boat, i.e. a string of barges, articulated together to reduce traction and for use in restricted waterways, such as canals. In December 1795 White made an association with the Parisian carpenter Jean-Baptiste Decoeur, and the next year they bought a mill at Charenton. Then White invented a “machine à l’instar des lieux à l’anglaise”, patented in 1797.

In 1801 we found James White living at rue de Popincourt, 47, Paris, and working in association with the immigrant Austrian entrepreneur Simon-Thaddée Pobecheim, who established a small cotton mill in the attic of the church Notre-Dame des Blancs-Manteaux. White earned 5% of the profits of the company in exchange for “his talents, processes, and industry in mechanics”. In 1803 White and Pobecheim decided to transfer the company to a former grain mill in Baulne, near Ferté-Alais. In 1804, they took a fifteen-year patent for a “un système préparatoire des matières filamenteuses”, which they perfected several times later, and continued their teamwork until 1807.

At the second Exposition des produits de l’industrie française in 1801, White demonstrated his hypo-cycloidal mechanism, based on the property formulated by the French scientist Philippe de La Hire in 1666, that a point on the circumference of a wheel rolling inside one twice its diameter will describe a straight line. This invention was awarded a renumerating medal by Napoleon Bonaparte. At the same exposition, White presented also a dynamometre.

In the early 1800s, White invented and in 1808 patented single and double helical spur gearing, perhaps the invention on which he seems to have placed most store. He invented also a horizontal water wheel, which was in effect a radial outward-flow turbine.

Another patent, that White took during his stay in France (in 1811) is seemingly of great importance—for the automatic nail-making machine. This was the first machine for making nails from wire, and later considerable manufacture sprang up in France. White has also been credited as being the first to bring out, in 1811, shears for cutting sheet iron in a circular shape.

Hotel Bretonvilliers, Ile de St. Louis, Paris, in 1757
Hotel Bretonvilliers, Ile de St. Louis, Paris, in 1757

After breaking his agreement with Pobecheim in 1807, White moved to rue Saint-Sébastien in Paris, and from 1809 he lived in hotel Bretonvilliers, Ile de St. Louis (still existing, see the nearby painting from 1757), and was engaged in spinning wool mechanics, velvet weaving and nail making.

James White returned to England in February 1815, probably because of the termination of the war by the final defeat of Napoleon at Waterloo. He settled in Manchester presumably because it was one of the foremost world centers of mechanical engineering, and in December 1815, he presented to the Manchester Literary and Philosophical Society the paper On a new system of cog or toothed wheels.

White wrote that “…in 1817 I was employed by Matthew Corbett, one of the proprietors of a factory at the Pin Mill, Ancoats, to erect a number of my wheels,” but owing to the defective lining of the shafting due to overloaded floors, the gears got out of mesh and was scraped out. Later White devised a milling machine to cut the gears by milling cutters.

In 1820 White obtained a British patent No. 4485 for preparation and spinning of textiles.

James White died on 17 December 1825, aged 63, at his home in Chorlton-on-Medlock, Manchester. He was described in his obituary notice as a Civil engineer and author of the New Century of Inventions.