
CAT. NUMBER
26-2101

USER'S MANUAL
Rsdie/haek

CUSTOM MANUFACTURED IN U.S.A. BY RADIO SHACKM A DIVISION OF TANDY CORPORATION

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


LIMITED WARRANTY
Radio Shack warrants for a period of 90 days from the date of delivery to customer that the computer hardware
described herein shall be free from defects in material and workmanship under normal use and service. This
warranty shall be void if the computer case or cabinet is opened or if the unit is altered or modified. During this

period, if a defect should occur, the product must be returned to a Radio Shack store or dealer for repair.

Customer's sole and exclusive remedy in the event of defect is expressly limited to the correction of the defect
by adjustment, repair or replacement at Radio Shack's election and sole expense, except there shall be no
obligation to replace or repair items which by their nature are expendable. No representation or other affirma-
tion of fact, including but not limited to statements regarding capacity, suitability for use, or performance of the
equipment, shall be or be deemed to be a warranty or representation by Radio Shack, for any purpose, nor give

rise to any liability or obligation of Radio Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, THERE ARE NO OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND IN NO EVENT SHALL RADIO
SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL, CONSEQUENTIAL OR
OTHER SIMILAR DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN "AS IS" BASIS WITHOUT
WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other person or entity with respect to

any liability, loss or damage caused or alleged to be caused directly or indirectly by computer equipment or

programs sold by Radio Shack, including but not limited to any interruption of service, loss of business or

anticipatory profits or consequential damages resulting from the use or operation of such computer or computer
programs.

NOTE: Good data processing procedure dictates that the user test the program, run and test sample sets of

data, and run the system in parallel with the system previously in use for a period of time adequate to

insure that results of operation of the computer or program are satisfactory.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


A Personal Note from the Author

1pntv of good conventional
, -u v There are plenty or &u

books, and plenty that ^ anything

T-- -^3 riSf^o^j-rrn Sr;r
k

^dio Shack TRS-80 counter an ^ f a un ^air ^.^
a competent P^^^oyant and ridiculous technique ^
and unconventional, £la**°y*

fun with your computer.

S was used. 1 want you to have^ ^ ^.^ to £e«.

you to be afraid of it,
& M

,« out on this book were good tas
contains no

The only «Stra^"fyour intelligence. Beyond that ^ attempt

attempt not to insult.your ^ intimidate you > ^ &u
-. snow jobs", no effor P

. dea that computers

to sell you anything excep

that bard to learn to use. ^ above

, i i, as though savoring a goon
rout ine

Sit back, relax, ^fj^JjV. I'll supply you £**!*
all, let your ima Sxn3t*°

n *
d . The real enjoyment begin

becomeB

facts and -^ ŝ

eS
thr cr

n
eative juices ^f^Vot the other way

imagination starts the c ^ tM master »°
into an

a t0 °
d VtStToi- U evolves fro, just a bo, P

S-siofofyour personality

Enjoy your new computer!

Dr. David A- Lien

San Diego - 1977

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


FIRST EDITION
SECOND PRINTING — 1978

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial con-
tent, in any manner, is prohibited. No patent
liability is assumed with respect to the use of the

information contained herein. While every pre-

caution has been taken in the preparation of this

book, the publisher assumes no responsibility

for errors or omissions. Neither is any liability

assumed for damages resulting from the use of the

information contained herein.

© Copyright 1977, Radio Shack,
A Division of Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.

Printed in the United States of America

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Table of Contents

This User's Manual and You 4

Part A: Chapter 1 Computer Etiquette. PRINT, NEW, and RUN 7
Chapter 2 Expanding a Program. LIST, REM, END, LET, WHAT?, HOW? 11
Chapter 3 Math Operators 17
Chapter 4 Scientific Notation 23
Chapter 5 Order of Operations. Use of Parentheses 25
Chapter 6 Relational Operators. IF-THEN, GOTO '

[ 29
Chapter 7 INPUTting Data 33
Chapter 8 Calculator Mode. MEM, SORRY '..'.'.'.

'.37

Chapter 9 Using Cassette Tape for Mass Storage. CLOAD, CSAVE 41
Chapter 10 Loops. FOR-NEXT, STEP, CLS, Break Key 45
Chapter 1 1 Timer Loops. LIST ###, RUN ###, STOP, CONT 53
Chapter 1 2 Formatting Output with TAB 61
Chapter 1

3

Nested Loops 65
Chapter 14 INT Function 69
Chapter 15 More Branching Statements. Subroutines. ON-GOTO, GOSUB

ON-GOSUB, RETURN 77
Chapter 16 READ, DATA, RESTORE. String Variables A$ and B$ 85
Chapter 1 7 ABS Function 93
Chapter 18 Level I Shorthand Dialect. Multiple-Statement Lines 95
Chapter 1 9 Generating Random Numbers with RND 99
Chapter 20 Video Display Graphics. SET, RESET 105
Chapter 21 Arrays Using A(X) 123
Chapter 22 Advanced Graphics. PRINT AT, POINT 133
Chapter 23 Flowcharting 141
Chapter 24 Logical Operators. * (AND), + (OR)

! . T47
Chapter 25 Advanced Subroutines 155
Chapter 26 Debugging Programs 165

Part B: Sample Answers to Programming Exercises in Chapters 3 through 25 177

Part C: Prepared User's Programs 201

Appendix:

Appendix A: Prepared User Subroutines 216
Appendix B: Cassette Data Files 221
Appendix C: Combined Function and ROM Test 225

SUMMARY OF LEVEL I BASIC 232

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


This User's Manual and You

This Manual has been written for the average person who has no

experience with a Computer. We've deliberately kept our style

light and humorous (some may even say it's corny!) ... we think

this will make your learning experience fun.

(And why shouldn't learning be fun . . . ?)

The Manual is organized in three basic sections:

A. 26 Chapters which introduce you to various capabilities of

the Computer; in small enough bites so you won't choke.

These Chapters include numerous little check points and

examples (as we get deeper into the book the examples get

deeper).

At the end of the Chapters we've given some Exercises - to

give you a chance to try out your knowledge ON YOUR
OWN.

B. A section with sample answers to the Exercises in each

Chapter. You can see how you make out with your attempts

at programming.

C. A section with some User's Programs - some good

examples of interesting and practical programs (some for

fun, some for business, some for education, etc.).

We've also included some helpful information in an APPENDIX.

The Manual is written in a style where the Computer assists you in

learning (educators might like to call it "Computer Assisted

Instruction" . . . we'll try to avoid trying to impress you with that

type of fancy wording).

So, on you go - and we hope you have as much fun with this book

as we did preparing it (we had some headaches too . . . hope you

don't have any of those).

4

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SETTING UP THE SYSTEM

Carefully unpack the system. Remove all packing material. Be sure you
locate all cables, papers, tapes, etc. Save the packing material in case

you need to transport the system.

Connecting the Video Display and Keyboard:

1. Connect the power cord from the Video Display to a source of 120
volts, 60 Hz AC power. Note that one prong of the AC plug is wider
than the other — the wide prong should go into the widest slot of

the AC socket.

NOTE: If you use an AC extension cord, you may not be able to

plug the Display's power cord in. Do not attempt to force
this wide prong into the extension cord; use a wall outlet

if at all possible.

Connect the power cord of the Power Supply to a source of 120
volts, 60 Hz AC power.

Connect the gray cable from the front of the Video Monitor to the

VIDEO jack on the back of the Keyboard Assembly. Take care to

line up the pins correctly (the plug fits only one way).

NOTE: Before the next step, be sure the POWER switch on the

back of the Keyboard is off (button out).

Connect the gray cable from the Power Supply to the POWER
jack on the back of the Keyboard Assembly. Again, take care to

mate the connection correctly.

2.

3.

4.

POWER BUTTON

POWER POWER VIDEO TAPE
BUTTON

(ON REAR)

Connecting the Cassette Recorder:

NOTE: You do not need to connect the Cassette Recorder unless you
plan to record programs or to load taped programs into the TRS-80.

1.

2.

Load batteries into the CTR-41 as described in the Manual. Or
make connections for 120 volt AC power.
Connect the short cable (DIN plug on one end and 3 plugs on the
other) to the TAPE jack on the back of the Keyboard Assembly.
Be sure you get the plug to mate correctly.

The 3 plugs on the other end of this cable are for connecting to
the CTR-41.
A. Connect the black plug into the EAR jack on the side of the

CTR-41. This connection provides the output signal from the
CTR-41 to the TRS-80 (for loading Tape programs into the
TRS-80).

Connect the larger gray plug into the AUX jack on the CTR-41.
This connection provides the recording signal to record pro-
grams from the TRS-80 onto the CTR-41 's tape.
Also, plug the Dummy Plug (provided with the CTR-41) into
the MIC jack (this disconnects the built-in Mic so it won't pick-
up sounds while you are loading tapes).

NOTE: Be sure you always use the Dummy Plug when loading
programs onto tape (Recording).

B

Dummy Plug

C. Connect the smaller gray plug into the REM jack on the
CTR-41. This allows the TRS-80 to automatically control the
CTR-41 's motor (turn tape motion on and off for recording
and playing tapes).

Notes On Using The Recorder

There are a number of things you should be aware of as you use the

Cassette Tape System: (Some of this will be covered in greater detail

in Chapter 9 . . . but some of you can't wait till then . . . can you!)
1. To Play a tape (load a taped program into the TRS-80), you must

have the CTR-41 's Volume control set to 7 to 8. Then press the

CTR-41

'

s PLAY key and then type CLOAD on the TRS-80 and
I3i?fcl3;l this command. This will start the tape motion. An * will

appear on the top line of the Monitor; a second * will blink, indi-

cating the program is loading. When loading is done, the TRS-80
will automatically turn the CTR-41 off and flash READY on the

screen. You are then ready to RUN the program (type in

and hit 021133).

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


TURNING THE SYSTEM ON

2. To Record a program from the TRS-80, press the CTR-41's

RECORD and PLAY keys simultaneously. Then type CSAVE on

the TRS-80 and Hflhfrfcl this command. When the program has

been recorded, the TRS-80 will automatically tum the CTR-41 off

and flash READY on the screen. Now you have your program on

tape (it still is in the TRS-80 also). Many computer users make a

second or even a third recording of the tape, just to be sure they

have a good recording.

NOTE: To load the full 4K of RAM in the TRS-80 takes less than

3 minutes of tape. Short programs will take only a few

seconds of tape.

3. Use the CTR-41 's Tape Counter to aid you in locating programs on

tapes.

4. For best results, use Radio Shack's special 10 minute Computer

Tape Cassettes (especially designed for recording computer pro-

grams). If you use standard audio tape cassettes, be sure to use top

quality, such as Realistic SUPERTAPE. Keep in mind that audio

cassettes have lead-ins on both ends (blue non-magnetic mylar

material) — you can not record on the leader portion of the tape.

Advance the tape past the leader before recording a program.

5. When you are not going to use a CTR-41 for loading or recording

programs, do not leave RECORD or PLAY keys down (press

STOP).
6. To REWIND or FAST-Forward a cassette, you must disconnect the

plug from the REM jack (with REM jack connected, the TRS-80

controls tape motion).

7. If you want to save a taped program permanently, break off the

erase protect tab on the cassette (see CTR-41 Manual).

8. Do not expose recorded tapes to magnetic fields. Avoid placing

your tapes near the Power Supply.

9. To check if a tape has a program recorded on it, you can disconnect

the plug from the EAR jack (also disconnect the REM plug so

you can control the CTR-41 with the keys) and Play the tape;

you'll hear the program material from the speaker.

Turn on the Video Display by pressing the POWER button. Tum on

the TRS-80 Keyboard by pressing the POWER button on the back

(next to the POWER jack); the red LED just to the right of the Key-

board should light up and the screen should show READY . Adjust C

(contrast) and B (brightness) controls on the front of the Display for

the sharpest display. Set Brightness so the background is gray and the

words are white. Do not set Brightness too high.

If Display does not show READY
,
press the Keyboard's POWER

switch off and on again,

NOTE: There is a Reset button inside a door at the left rear of the

Keyboard assembly. This Reset button can be used to unlock a loop-

ing program or if the TRS-80 does not turn off a cassette or in other

such abnormal program situations.

One More Thought - ',
.-' ')".; :

You're all ready now, right? Well, maybe. But let's just prepare you

for the TRS-80 and Manual with one more thought . . .

How do you "talk" to a Computer? In Binary Numbers? In Elec-

tronics (is there such a language . . ,)? In English . . .?

Well, we use a simplified form of English — it's called the BASIC

Language (Beginners All-purpose Symbolic Instruction Code). (There

are lots of other "computer languages", but this is the easiest.) This

Manual covers Radio Shack's LEVEL I BASIC.

As you go through this Manual you'll learn the different words of this

simple computer language — and how to punctuate (VERY IMPOR-

TANT) — and how to apply all of it for fun and practical benefit. It's

an easy language to learn — but remember, you've got to use the

language that the TRS-80 understands (well be giving you some

examples of wrong language use and you'll see what happens).

6

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 1

Computer Etiquette

From the moment you turn it on, the TRS-80 follows a well-defined set of rules for coping

with you, the "master," This makes it an especially easy computer to use. To a large extent,

all you have to do is say the right thing (via the keyboard) at the right time. Of course, there

are lots of "right things" to say; putting them together for a purpose is called programming.

In this chapter we're going to start a conversation with the TRS-80 by teaching it a few

simple social graces. At the same time, you'll be learning the fundamentals of computer
etiquette. You'll even write, wonder of wonders, your first TRS-80 computer program!

Getting READY

1. Connect the keyboard-computer, Video Display and Power Supply as explained in the

previous section. Plug Video Display and Power Supply into 120-volt AC outlets.

2. Press POWER button on Video Display and the back of the Keyboard. Give the video

tube a few seconds to warm up.

3. READY ____>— should appear in the upper left corner of the screen. Press the QQQ|Q key

several times to produce a column of READY messages. The Computer is trying to tell

you something: "I'm ready — it's your turn to do something!

"

To make sure you start off with a clean slate — erasing all traces of prior programs or tests —
type NEW and press |3fllia;| , The Computer will respond by erasing the screen and print-

ing

READY
> —

at the top of the screen.

Now type in p . M . and I3i?na;l . This is a test to see that the Computer powered up proper-

ly. The display should read:

P.M.

3583

This set of rules is permanently stored in the

Computer in two programs, called the monitor
and the interpreter.

is a monitor command. It tells the Com-
puter to take a look at whatever you've typed on
the screen. In step 3, you didn't type anything,

so the Computer just comes back with another
READY .

Hit E key, (Tj key, [M] key and Q key.

Don't use shift key — letters are always capital for
TRS-80.

If you have 8K of memory, the number should
be 7679. With 16K of memory, it should be
15871.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


If the number is not 3583, turn the Computer off, using the pushbutton on the right rear

corner of the keyboard. Wait about 10 seconds and turn it on again. Repeat the test and

verify that the number is 3583.

Just What Is a Computer Program?

A program is a sequence of instructions that the Computer stores until we command it to

follow (or "execute") those instructions. Programs for the TRS-80. are written in a language

called BASIC — and that should give you an idea of how easy it is to learn!

Let's write a simple one-line program to let the TRS-80 introduce itself. First be sure the

last line on the screen shows a>, which we call the "prompt". This is the Computer's way of

saying, "Go ahead — do something! " Now type the following line, exactly as shown

:

10 PRINT "HELLO THERE. I AM YOUR NEW TRS-80 M I CROCGMPUTER !

"

Do not hit QZQ1D key yet!

If you made a mistake, don't worry — it's much easier to correct typing errors on the

TRS-80 than it is on a regular typewriter. No rubber erasers or white paint to fuss with! Just

use the backspace key *. Each time you press this key, the rightmost character will be

erased. If your error was at the beginning of the line, you'll have to erase your way back to

that point and then retype the rest of the line.

Now go back and examine VERY CAREFULLY what you have typed:

1. Did you enclose everything after the word PRINT in quotation marks?

2. Are there any extra quotation marks?

If everything's okay, you can press l^ll^ jp . The > prompt will reappear. The Computer is

telling you, "Fine — what's next?"

If It's Too Late

If you find an error after you've typed a line and pressed la^il^ jj ,
you cannot use the*

backspace key to correct it. Instead, retype the entire line correctly. As soon as you

1^113.11 the line, it will replace the incorrect one. This is because both of them share the

same starting number (in this case, 1(8).

It's good practice fa* perform this simple test

whenever you turn on the TRS-80. Always type

N£W and r^h^il befor* performing the test.

.As for what the test tests — we'll wait a'few

chapters for that!

"EXTRA CAREFUL'

You don't have to use the i
shift j key to get a

capital letter — that's the only kind of letter'theV;
:

:

TRS-80 uses. However, some of the keys do
have two characters printed on them. Use the ,.,';'/. >}

. iSHift \ key to get the upper cha?facters-—,\

\

j£e ,'the

" marks and the exclamation pomt(!>.

See- the little "dash" (—) that moves across th*--

screen as you type in a letter? This is the "cursor".

It lets you know exactly where the next character

you type will be printed oh the screen. Pushing the

space bar moves the cursor along one space, with-

i>ttt printing anything. :

If you; press ^i?»3:l a second time , the screen

''Wffl"'»e&i. ;

.l.-'-r; felifO .[''-L-':.~:,"yz:$:?,

READY
This is reassuring/hut riotheeessaty — as long as

the bottom item on the screen is the>pfompt,
you know it's "yoor turn."

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


"Allow me to introduce myself."

Now we'll tell the Computer to execute our program. The BASIC command for this is

simple; RUN. So type RUN and press l^m:l . If you made no mistakes, the display will

read:

HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER!

If this isn't what you got, go back and try it again. If HUN still doesn't produce the greeting,

there's something wrong in your program. Type NEW to clear it out and type in the one-line

program again.

If it did work — let out a yell! "HEY MA, IT WORKS!" This is very important, because now
that you have tasted success with a computer, it may be the last you are heard from in some
time.

Note that the word PRINT was not displayed, nor were the quotation marks. They are part

of the program's instructions and we didn't intend for them to be printed.

Type the word RUN again and hit IJt'Md;! ,

Type RUN to your heart's content, watching the magic machine do as it's told, over and

over. When you feel you've really got the hang of all this, get up and stretch, walk around
the room, look out the window — the whole act. Because you'll soon get hooked and you
won't want to take time for such things later on.

— Learned in Chapter 1

ComftlarKte - Statements

PRINT

Miscellaneous

> prompt

— cursor

IBREAKI

WU4A

NEW -* backspace key

RUN " " quotation marks

We'll put a list like this at the end of each chapter. Use it as a checkpoint to make sure you
didn't miss anything.

Maybe you're wondering what's the difference between BASIC commands and BASIC
statements. Commands are executed as soon as you type them in and press IJ^fct3;l . State-

ments are put in to programs and are only executed after you type the command RUN .

i

I

"HEY MA, iT WORKS.'"

Whether you're typing in a program; . or:giving

direct commands like RUN, you've got to hit

ldhi£1j to tell the Computer to take a look at

what you've typed and act accordingly.

Special message for people who can't resist the

urge to play around with the computer and skip

around in this book. (Viere always are a few!) It's

possible to "lose Control" of the Computer t so
thatifwoti't give you a READY message when
you press la^Maii. To regain control, just press

. M.1MI .t4e"j|'3JliJja Jf^atdoesn't.:w6rk;:
find the Reset button inside the left rear corner

of rSe :TRS-S« and pus;h it. There)

As you exercise your TRS-80, you 11 note that

with SHIfl] you get some symbol Characters

that are not used with LEVEL f(Eg^[ 1)
although they can be inside a print statement.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

10

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 2

How To Expand A Program

You now have a program in the Computer, (If you turned it off between lessons, fire it up

again and type in line 10 from Chapter 1.) It's only a one-liner, but let's expand it by adding

a second line. In BASIC, every line in the program must have a number, and the program is

executed in order from the smallest number to the largest. Type:

20 PRINT "YOU CALLED, MASTER. DD YOU HAVE A COMMAND?"

Check it carefully — especially the quote marks, then

RUN wim;i

If all was correct, the screen will read:

HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER!
YDU CALLED, MASTER. DO YOU HAVE A COMMAND?

If it ran OK, answer the question by typing

yes BSED
Oh — sorry about that! It "bombed", didn't it? The screen said,

WHAT?

This error message is the result of a built-in troubleshooter which lets you know when
you've said the wrong thing {or the right thing at the wrong time), The WHAT? message on
the screen says, "No-no, dummy — the program you wrote doesn't have any way for me to

accept an answer just because it asked a question" or words to that effect.

A later lesson will cover another error message. Meanwhile, if you get a WHAT? , HOW?
or SORRY , go back and examine the program for an error. Your "YES" answer here was
used purposely to show an error message. Later on, we'll program the Computer to accept a

"YES" or "NO" answer and act on it.

Haveyou noticed that we use for the h&niber

;
zero — so you can distinguish between the letter:

m& number. The Video Display does it this way
so well do the same throughout the Manual.

'WHAT?'

n

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


And the Program Grows

It is customary, traditional (and all that) to space the lines in a program 10 numbers apart.

Note that your two-line program has the numbers 10 and 20. The reason , . . it's much easier

to modify a program if you leave room to insert new lines in-between the old ones. There is

no henefit to numbering the lines more closely (like 1,2,3,4). Don't do it.

Look at the Video Display. Let's decide we'd rather not have the two lines so close together,

but would like to have space between them. Type in the new line:

is print nana
Then

run Bgjga

it should now read:

HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER!

YOU CALLED, MASTER. DO YOU HAVE A COMMAND?

Looks neater, doesn't it? But what about line 15??? It says PRINT. PR I NT what???? Well

- print nothing. That's what followed PRINT , and that's just what it printed. But in the

process of printing nothing it automatically activated the carriage return, and inserted a

space between the printing ordered in lines 10 and 20. So that's how we insert a space.

Another important statement is REM, which stands for REMARK. It is often convenient to

insert REMarks into a program. Why? So you or someone else can refer to them later, to

help you remember complicated programming details, or even what the program's for and

how to use it. It's like having a scratch-pad or notebook built-in to your program.

When you tell the Computer to execute the program by typing RUN and I3im:l , it will

skip right over any numbered line which begins with the statement REM. The REM state-

ment will have no effect on the program. Insert the following:

5 REM *THIS IS MY FIRST COMPUTER PROGRAM* jiJJh J=f;f

then

run BZBa

The run should read just like the last run, totally unaffected by the presence of line 5. Did

it?

12

Didn't that room 'between lines 19 and 20 conte'm

handy'?

You might be wondering why the asterisks^) in

line #5? The answer is , . . they're just for decora-

tion : let 's give this operation, some etwsf Remem-
ber, anything that is typed on a line following REM
;is ignored by the Computer- ...

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Well, this programming business is getting complicated and I've already forgotten what is

in our "big" program. How can wc get a listing of what our program now contains? Easy. A
new BASIC command. Type

list nana

The screen should read

:

5 REM *THIS IS MY FIRST COMPUTER PROGRAM*
10 PRINT "HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER!"
15 PRINT
20 PRINT "YOU CALLED, MASTER. DO YOU HAVE A COMMAND?"

You can call for a LIST any time the prompt appears on the screen.

Where is the END of the program?

The end of a program is, quite naturally, the last statement you want the Computer to

execute. Most computers require you to place an END statement after this point, so the

computer will know it's finished. But with your TRS-80, an END statement is optional —
you can put it in or leave it out. Remember though, if you want to run your BASIC pro-

grams on fussier computers, you'll probably need the END statement.

Let's take a close look at END. By the rules governing its use, most dialects of BASIC which

require END insist that it be the last statement in a program, telling the computer "That's

all, folks." By tradition, it is given the number 99, or 999, or 9999 (or larger), depending on

the largest number the specific computer will accept. Your RADIO SHACK computer

accepts Line numbers up to 32767.

Let's add an END statement to our program.

Type in:

99 END EZJH3

then

run sasa

The sample run should read:

HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER!

YOU CALLED, MASTER. DO YOU HAVE A COMMAND?

When "we get into more complex programs, youTI
want to use £NB statements to force the Com-
puter to:stop at specified points +- so actually,

END comes in very handy even WietheMlS-Su-

13

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


"Why didn't the word END print?" Answer: Because nothing is printed unless it is the

"object" of a PRINT statement. So how could we get the Computer to print THE END at

the end of the program execution? Think for a minute before reading on.

98 PRINT " THE END "

Erasing Without Replacing

Just for fun, let's move the END statement from line 99 to the largest usable line number,

32767. This requires two steps.

The first is to erase line 99. Note that we're not just making a change or correcting an error

in line 99 — we want to completely eliminate it from the program. Easier done than said:

Type:

99

Then nana

The line is erased. How can we be sure? Think about this now. Got it??? Sure — "pull" a

LIST of the entire program by typing

list BZQ3D

The screen should show the program with lines 5, 10, 15, 20 and 98. .99 should be gone.

Any entire line can be erased the same way.

The second step is just as easy. Type

32767 END MJHHil

. . . and the new line is entered. Pull a listing of the program to see if it was. Was it??? Now
RUN the program to see if moving the END statement changed anything. Did it??? It

shouldn't have.

Other Uses for END
Move END from #32767 to line #17, then RUN. What happened? It ENDed the RUN after

printing line 10 and a space. RUNit several times.

Now moveENDto line 13 and RUN . Then to line 8 and RUN. Do you see the effect END
has, depending where it is placed (even temporarily) in a program?

14

This will work if line #98 is th& last PEINT
statement in yautprc^raKi.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Another Error Message

Let's cause a different error message to appear. Move the optional END statement from line

8 to line 50000. The Computer should come back with an error message

H0W7

It is saying "I am very patient with you humans and will obey your every command as

long as it is within my ability. Line numbers above 32767 are beyond my ability, so just

HOW do you expect me to obey?" Pretty smart, this computer.

Commands

Learned in Lesson 2

Statements Miscellaneous

LIST PRINT (Space) Error Messages

REM WHAT?

END HOW?

Line Numbering

\lk general; ;

a'HOW? message means* "I m*der$ftihd

'your instruction?, but they're asJoag/ltte to 4o i .

something tfeatV impossible.
!*The WHAT? error;'

message, on the other hand, means, "1 dont
understand yourinstruction — either th« grammar
isjsrong or you're using words that aren't in m>
.voea&ulary." : ;

\
"

' ."
.

_" _- ",;*. ";

15

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

16

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 3

"But Can It Do Math?"

Yes, it can. Basic arithmetic is a snap for the TRS-80. So are highly complex math calcu-

lations — when you write special programs to perform them. (More on this later.)

LEVEL I BASIC uses the four fundamental arithmetic operations, plus a fifth which is just

a modifications of two of the others.

1. Addition, using the symbol +

2. Subtraction, using the symbol

—

(See - nothing to this. Just like grade school. ! wonder whatever happened to old

Miss . . . Well, ahem - anyway)

3. Multiplication, using the special symbol *

(Oh drat, I knew this was too easy to he true!)

4. Division, using the symbol /

( Well, at least it's simpler than the old -v symbol)

5. Negation (meaning "multiply-times-minus-one"), using the symbol—

Now that wasn't too bad, was it? Be careful. You cannot use an "X" for multiplication.

Unfortunately, a long time ago a mathematician decided to use "X", which is a letter, to

mean multiply. We use letters for other things, so it's much less confusing to use a "*" for

multiplication. Confusion is one thing a computer can't tolerate.

So, to computers, "*"
is the only symbol which means multiply. After using it a while, you,

too, may feel we should do away with X as a symbol for multiplication.

Putting all this together in a program is not difficult, so let's do it. First, we have to erase

the "resident program" from the Computer's memory.

Type the command

then type

list Bgjga

to check that there's nothing left in memory. The Computer should come back with a

simplex

Of bourse, we £Iko need that old favorite, the

eqaifesigrj (:">.- 8u$ wait- - the BASIC language

. is particular about how we use ibis ai^il J&tit

expressions (like 1 + 2 * 5) can only go on the

right-hand side of tfe : equals sign; i|ie.left-aand : ":

sioW is reserved for the "variable ti&me". This is

thg name we give to tfce result of the math ex-
pression. {This all may seem a little strange^ hut...

it's really quite simple, as you 11 discover in the

next few. pages.) -
- - --

"Resident program" ^computer talk tor "what's

already in there".

17

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Putting the Beast to Work

We will now use the Computer for some very simple problem-solving. That means using
equations — oh - panic. But then, an equation is just a little statement that says what's
on one side of the equals sign amounts to the same as what's on the other side.

That can't get too bad (it says here).

We're going to use that old standby equation,

"Distance traveled equals Rate of travel times Time spent traveling."

If it's been a few years, you might want to sit on the end of a log and contemplate that for
awhile.

To shorten the equation, lets choose letters (called variables) to stand for the three quan-
tities. Then we can rewrite the equation as a BASIC statement acceptable to the TRS-80:

40 D = R * T

What's that 40 doing there? That's the program line number. Remember, every step in a pro-
gram has to have one. We chose 40, but another number would have done just as well. The
extra spaces in the line are there just to make the equation easier for us to read; the TRS-80
ignores them. Later, when you write very long programs, you'll probably want to eliminate
extra spaces, because they take up memory space. For now, they may be helpful, so leave
them in.

We can use any of the 26 letters from A through Z to identify the values we know as well as

those we want to figure out. Whenever you can, it's a good idea to chose letters that remind
you of the things they stand for — like the D, R, and T of the Distance, Rate, Time equation.

To further complicate this very simple example, we will point out now that there's an
optional way of writing the equation, using the BASIC statement LET:

40 LET D = R * T

This use of LET reminds us that making D equal R times T was our choice, rather than an
eternal truth like 1 + 1 = 2, Some computers are fussy, and always require the use of LET
with programmed equations. Your TRS-80 says, "Have it your way".

Okay — let's complete the program.

Assume:

Distance (in miles) = Rate (in miles per hour) multipled by Time (in hours). How far is it

from Boston to San Diego if a jet plane traveling at an average speed of 500 miles per
hour makes the trip in 6 hours?

18

Remember, we have to use the * for multqriica-

tton. . ,' ."/.

Here's what line 40 meansto t&e Computer;
"Tate the value^of Rand T^ multiply mem
together^ arul assign the resulting value to the vari-

able IX So until further notice, 5 fe equalto the
result of R times T."

We could not reverse the equation and write,

f^T^ p. This would have no meaning for the;

Computer. Hemember, the left hand side of the
1

equation is reserved for variable names (which-
:;eyer'tetter we choose). The right hand side iatihe--.

piaee to put math expressions involving numbers,
operators, and known variables.

'
(Yes, I ktiow^ybu aim'd^'ttiat'oheln your.':hS
hut that's not the point!)

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Type in the following:

10 REM * DISTANCE, RATE, TIME PROBLEM *E2Q33

(this sure is a slow computer).

20 R = 500

30 T = 6 mm
to D = r * t Gzoia

Check the program carefully, then

run ESE3

Hum de dum ho-hum

READY

All it says is READY . The Computer doesn 't work!

Yes it does. It worked just fine. The Computer multiplied 500 times 6 just like we told it,

and came up with the answer of 3000 miles. But we forgot to tell it to give us the answer.

Sorry about that.

Can you finish this program without help? It only takes one more line. Give it a good try

before reading on for the answer. That way, the answer will mean more to you. (Hint:

We've already used PRINT to print messages in quotes. What would happen if we said

50 PRINT M D "?.. . No, we want the value of D, not "D" itself. Hmmm, what happens

when we get rid of the quotes?)

RKED ON. THE MOVE
1

:

J.^ -:>:?- < vj-

"
*" "

DON'T RE0 BEYOND;
}&AJZ'KL-Jiih,' saw

Look in Part B of this Manual for an answer for this 1st Exercise. Also some notes and ideas.

Well, the answer of 3000 is correct, but its "presentation" was no more inspiring than the

printout from a hand calculator. This inevitably leads us back to where we first started this

foray into the unknown — the PRINT statement.

Note that we said in line 50 PRINT D. There were no quotes around the letter D like we had

used before. The reason is simple but fairly profound. If we want the Computer to print

the exact words we specify, we enclose them in quotes. If we want it to print the value

of a variable, in this case D, we leave the quotes off. That simple message is worth serious

thought before continuing on.

Yes, yet . . .we know: the 'distancefrom Bos$qb

to Saa Diego isefoser to 2§0y-r»H#$'— But we took )

a <juick detour via Bermuda (besides, 3000 is an

easiet^umbwtobe *orkh^with)?

Mdyou think seriously aBout it?!

you go!

, Then oti

19

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Now suppose we want to include both the value of something and some exact words on
th same line. Pay attention, as you will be doing more and more program design yourself,

and PRINT statements give beginners more trouble than any other single part of computer
programming. Type in the following:

50 PRINT "THE DISTANCE (IN MILES) IS",D EZH33

Then

run anna

The display should appear:

THE DISTANCE (IN MILES) IS 3000

(REMEMBER: Typing hi a statement with a Hue
rramber that already Is ih use erases the original

'

statement uritirety -~ and that's what we want to
.;

do here,)

How about that! The message enclosed in quotes is printed exactly as we specified, and the

letter gave us the value of D. The comma told the Computer that we wanted it to print two
separate items on the same line. We can tell it to print up to four items on the same line,

simply by inserting commas between them.

With this in mind, see if you can change line 5(3 so the computer finishes the program with
the following message:

THE DISTANCE IS 3000

impm

MILES,

Break up the quoted message into two parts, and put the variable in between them on the
PRINT line.

50 PRINT "THE DISTANCE IS" , D , "MILES."

Now what about all that extra space on the printout line? The reason for it is that the com-
puter divides up the screen width into four zones of 15 characters each. When a PRINT
statement contains two or more items separated by commas, the computer automatically

prints the items in different print zones. Automatic zoning is a very convenient method of
outputting tabular information, and we'll explore the subject further later on.

It's possible to eliminate all that extra space in the output from our Distance, Rate, Time
program. Retype the last version of line 50, substituting semi-colons (;) for commas
throughout the line.

run Bzngj

The display should appear:

20

jJGarefui — don^fc renUjqe the perfftcf'With ««emi*
'

eoloiu), ..:'..... „...;:.,.„. ..,...; .'....:':. ''•':
t-'--

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


THE DISTANCE IS 3000 MILES.

Look carefully at program line 50. There's no unused space between the S in IS , the D
,

and the M in MI LES . But in the printout on the display, there is a space between IS and
30 00 , and another space between 300 and MILES. How come?

Reason: A semicolon automatically inserts one space between the two items it is separating.
As you do more programming, this point will become important.

WHEW!

Well, we have already covered more than enough commands, statements and math operators
to solve myriads of problems.

Now let's spend some time actually writing programs to solve problems. There is no better
way to learn than by doing, and everything covered so far is fundamental to our success
in later Chapters. So don't jump over these exercises - it's the best way to get you into the
thick of programming. You'll find sample answers in Part B, along with further comments.

Math operators? — they're the-,
symbols ;we talked about earlier..:- -;

: -;; :,.-•... '):-::.; ':•>•:

EXERCISE 3-2: Write a program which will find the time required to travel by jet plane
from San Diego to Boston, if the distance is 3000 miles and the plane travels at 500 MPH.

EXERCISE 3-3; If the circumference of a circle is found by multiplying its diameter times
it, (3.14) write a program which will find the circumference of a circle with a diameter of
35 feet.

21

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 3-4: If the area of a circle is found by multiplying it times the square of its

radius, write a program to find the area of a circle with a radius of 5 inches.

EXERCISE 3-5: Your checkbook balance was $225. You've written three checks(for $17,
$35 and $225) and made two deposits ($40 and $200). Write a program to adjust your old

balance based on checks written and deposits made, and print out your new balance.

!";i'"':ir,;

LET

Learned in Chapter 3

Math
;

Operators Mtsceiteneous
>;

:

:

;: "

A-Z variables

22

ftem«mfoer, yotrcatt use any of the 26 .tetters^ n$t

just'l>, R &n$ T^they were just cpaverjient fmmt
\p^^^%::yv-;.:-j0;'':.

"'''.'
;'.:'

i-f^-yS*

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 4

Are There More Stars or Grains of Sand?

In this mathematical world we are blessed with very large and very small numbers. Millions

of these and billionths of those. To cope with all this, your Computer uses "exponential

notation", or "standard scientific notation" when the number sizes start to get out of hand.

The number 5 million (5,000,000), for example, can be written "5E+06". This means, "the

number 5 followed by six zeros."

If an answer comes out "5E-06", that means we must shift the decimal point, which is

after the 5, six places to the left, inserting zeroes as necessary. Technically, it means

5 X 10~6
, or 5 millionths, (.000,005). It's really pretty simple once you get the hang of it,

and a lot easier to keep track of numbers without losing the decimal point. Since the

Computer insists on using it with very large and very small numbers, we can just as well

get in the good habit, too.

Type NEW before performing the following exercises.

1
EXERCISE 4-1 : If one million cars drove ten thousand miles in a certain year, how many
miles did they drive altogether that year? Write and run a simple program which will give the

answer.

EXERCISE 4-2: Changes lines 20 and 30 in the Car Miles Solution program (from Exercise

4-1) to express the numbers written there in exponential notation, or SSN (Standard Scien-

tific Notation). Then RUN it.

"3, 714, 983, 217,

-OR WAS THAT-"

Qrtechrncaliy^J^JG6 , which is &tjane$ten to the
:

sixth pbwei:
'

'f§':'::-/

5*10*10*10*10*10*10

Now ypu $t&'.see the value of scientific notation!

in our &A&C, that's 5/19/10/10/10/10/10

Didn't forget the 02013 did you? Up till now
we've been reminding you thstyoi* ha*e toenter
eaefe Ime or command— but from now oil, well

assume you've got that Utile routineifiatte* <toW

23

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Learned in Chapter 4

Miscellaneous

E— notation

- *i
.

.:.--.
.

- ::}::::.;. ^--. \V;:/'\; ,.

(E standstor "exjsonent" and ta ©urease it refers

to the e&pp'nent oi 19 ~" i6- the number of sseros ;:.;

to the right or left of the main number.)

24

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 5

Using ( ) and the Order of Operations

Parentheses play an important role in computer programming, just as in ordinary math.

They are used here in the same general way, but there are important exceptions.

l.In BASIC, parentheses can enclose operations to be performed. Those operations

which are within parentheses are performed before those not in parentheses.

2. Operations buried deepest within parentheses (that is, parentheses inside parentheses)

are performed first.

3. When there is a "tie" as to which operations the Computer should perform first after

it has removed all parentheses, it works its way along the program line from left to

right doing the multiplication and division. It then starts at the left again and per-

forms the addition and subtraction.

NOTE: INT. RND and ABS functions are performed before multiplication and division. (We
haven't talked about these yet, but just to be complete . . . )

4. A. problem listed as (X) (Y) will NOT tell the Computer to multiply. X * Y is for

multiplication.

Example: To convert temperature in Fahrenheit to Celsius (Centigrade), the following

relationship is used:

The Fahrenheit temperature equals 32 degrees plus nine-fifths of the Celsius tempera-

ture.

Or, maybe you're more used to the simple formula —

F° = I- X C + 32

Assume we have a Celsius temperature of 25°. Type in this program and RUN it.

10 REM * CELSIUS TG FAHRENHEIT CONVERSION *

20 C = 25

30 f = ( 9/5 )*C + 32

40 PRINT C; "DEGREES CELSIUS ="
; F ;" DEGREES FAHRENHE I T .

"

"FRIENDS."

If you want to be sure your problems are calcu-

lated cotreetJJr, iuse ( ) around operations you
: ;*ant:p£rf/0ri»e&:fEif$L

ItecaH th« old memory aid, "l#y Dear Aunt y%-.

.Srtly'*? In math you are supposed to do Multipli-

cation and Division first (from left to righ i) , then
comeback for Addition and Subtraction (left to

:-^\:;";r --' : .;^. :SS?M^° -
" ^ : '-}\.

25

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Sample Run:

25 DEGREES CELSIUS = 77 DEGREES FAHRENHEIT.

First notice that line 40 consists of a PRINT statement- followed by four separate expres-

sions — two variables and two groups of words in quotes called "literals" or "strings".

Next, note how the parentheses are placed in line 30. With the 9/5 secure inside, we can

multiply its quotient times C, then add 32,

Now, remove the parentheses in line 30 and RUN again. The answer comes out the same.

Why?

1. On the first pass, the Computer started by solving all problems within parentheses, in

this case just one (9/5). It came up with (but did not print) 1.8. It then multiplied the

1.8 times the value of C and added 32.

2. On our next try, without the parentheses, the Computer simply moved from left to

right performing first the division problem (9 divided by 5), then the multiplication

problem (1.8 times C), then the addition problem (adding 32). The parentheses really

made no difference in our first example.

Next, change +32 to 32+ and move it to the front of the equation in line 30. Run it again,

without parentheses.

Did it make a difference in the answer? Why not?

Answer: Execution proceeds from left to right, multiplication and division first, then

returns and performs addition and subtraction. This is why the 32 was not added to the 9

before heing divided by 5. Very important! If they had been added, we would of course

have gotten the wrong answer.

EXERCISE 5-1 : Write and run a program which converts 65° Fahrenheit to Celsius. The rule

tells us that "Celsius temperature is equal to five-ninths times what's left after 32° is sub-

tracted from the Fahrenheit temperature."

C° = (F°-32)X 5.

9

Remember what the semi-eol«ns are for?

26

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 5-2: Remove the first set of parentheses in the #5-1 answer and run again.

EXERCISE 5-3: Replace the first set of parentheses in program line 30 and remove the
second pair of parentheses, then RUN. Note how the answer comes out — correctly!

EXERCISE 5-4: Insert brackets in the following equation to make it correct. Write a

program to check it out on the TRS-80.

30-9-8-7-6 = 28

Learned in Chapter 5

MisceltenetHis

( )

Order of Operations

27

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

28

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 6

IF you liked Chapter 1 through 5, THEN you're going to love the rest of this book!

Because we're really just getting into the good stuff. Like IF-THEN and GOTO statements
that let your Computer make decisions and take . . . er, executive action. But first, a few
more operators . . .

Relational operators allow the Computer to compare one value with another. There are only
three

:

1. Equals, using the symbol =

(How'd you guess?)

2. Is greater than, using the symbol >

3. Is less than, using the symboK

Combining these three, we come up with three more operators:

4. Is not equal to, using the symbolo
5. Is less than or equal to, using the symbol< =

6. Is greater than or equal to, using the symbol > =

By adding these six relational operators to the four math operators we already know, plus

new STA TEMENTs, called IF-THEN, & GOTO, we create a powerful system of comparing
and calculating that becomes the central core of everything else that follows.

The IF-THEN statement, combined with the six relational operators above, gives us the
action part of a system of logic. Enter and RUN this program:

10 A = 5

20 IF A = 5 THEN 50

30 PRINT "A DOES NOT EQUAL 5."

40 END

50 PRINT "A EQUALS 5-"

The screen should display:

A EQUALS 5.

THEV GOTTA MAKE IT A MOVIE/"
'''

'

- : "'.:\':
.\l:'-'.v.:\\ "i

R&ample: A< B means A is less tnte B. Toheh> ;

/'you distinguish betw«en<and >y just remember '

:''. that the smaller part of the<synibal points ito ttte:

smaller of the two quantities being compared.

29

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Now let's examine the program line by line.

Line 10 establishes the fact that A has a value of 5.

Line 20 is an IF-THEN statement which directs the Computer to go to line 50 IF the value
of A is exactly 5, skipping over whatever might be inbetween lines 20 and 50. Since A does
equal 5, the Computer jumps to line 50 and does as it says, printing A EQUALS 5. Line 30
and 40 are not used at all in this case.

Now, change line 10 to read:

10 A = 6

and RUN

The run should say:

A DOES NOT EQUAL 5.

Taking it a line at a time

:

Line 10 establishes the value of A to be 6.

Line 20 tests the value of A. If A equals 5, THEN the Computer is directed to go to line 50.
But "the test fails", that is, A does NOT equal 5, so the Computer proceeds as usual to the
next line, line 30.

Line 30 directs the Computer to print the fact that A DOES NOT EQUAL 5. It does not
tell us what the value of A is, only that it does not equal 5. The Computer then proceeds on
to the next line.

Line 40 ENDs the program's execution. Without this statement separating lines 30 and 50,
the Computer would charge right on to line 50 and print its contents, which obviously are
in conflict with the contents of line 30. This is an example of using an IF-THEN statement
with only the most fundamental relational operator, the equals sign.

Now let's see if you can accomplish the same thing by using the "does not equal" sign:

30

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 6-1 : Rewrite the resident program using a "does not equal" sign in line 20
instead of the equals sign, changing other lines as necessary, so the same results are achieved
with your program as with the one in the Example.

EXERCISE 6-2: Change line 10 to give A the value of 6. Leave the other four lines from
#6-1 as shown. Add more program lines as necessary so the program will tell us whether A
is larger or smaller than 5 and RUN

.

31

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 6-3: Change the value of A in line 10 at least three more times, running after

each change to ensure that your new program works correctly

.

The IF-THEN statement is what is known as a CONDITIONAL branching statement. The

program will "branch" to another part of the program on the condition that it passes the

test it contains. If it fails the test, the program simply continues to the next line.

A statement called GOTO is known as an UNCONDITIONAL branching statement. If we

were to replace lines 40 and 80 with GOTO 99, and add line 99:

99 END

. whenever the Computer hit line 40 or 80 it would unconditionally follow orders and

go to 99, ENDing the run. While your Radio Shack Computer is rather broad-minded

when it comes to accepting these various BASIC dialects, many computers are not. For

practice, change lines 40, 80 and 99 as discussed above and

Did the program work OK as changed? Did you try it with several values of A? Be sure

you do so! We will find many uses for the GOTO statement in the future.

Statements

IF-THEN- Ci-jt-

GOTO

Learned in Chapter 6

Relational "ii

Operators X,

>

<

< >

< =

> =

SfisceHatteous

Conditional branching

Unconditional branching

No sample answers are giv?n ^iftce you are

fthoosmg your own values of.A- It wiil be obvious

Whetherordot you are gettingth« right: answer.

'."'•J' ^.' ''-:.'

Note: DoNo! leave a space between GO and TO

.

(some forms of BASIC use two words — Radio

Shack's BASIC wants only one word).

32

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 7

It Also Talks and Listens

Begin this lesson by typing in the sample answer program to Exercise #6-2:

By now you have probably gotten tired of having to retype line 10 over each time you wish
to change the value of A. The INPUT statement is a simple, faster and more convenient
way to accomplish the same thing. It's a biggie, so don't miss any points.

Add the following lines to the resident program:

5 PRINT " THE VALUE I WISH TO GIVE A IS"

10 INPUT A

Now RUN

The Computer should print:

THE VALUE I WISH TO GIVE A IS

?_

See the question mark on the screen. It means, "It's your turn — and I'm waiting . .
."

Enter a number and see what happens. It should be identical to what happened when you
typed in the same number earlier by changing line 10. Run the program several more times
to get the feel of the INPUT statement.

Pretty powerful, isn't it?

Let's add a touch of class to the INPUT process by retyping line 5 as follows:

5 PRINT "THE VALUE I WISH TO GIVE A I
S

"

t

Look at that line very carefully. Do you see how it differs from the earlier line 5??? It is

different A semicolon has been added at the end of the line.

Reddest — remember, that's the program that is

nowpresiding in the Computer.
.?:-

33

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Think back a bit now. We used semicolons before in PRINT statements, but only in the
middle to hook several of them together so they would print close together on the same
line. In this case, we put a semicolon at the end, so the question mark from the next line

wil print on the same line, rather than down there by itself. After changing line 5 as above,
RUN it. It should read:

THE VALUE I WISH TO GIVE A IS?_

Please note that you cannot use a semicolon indiscriminately at the end of a PRINT state-

ment. It is only meant to hook two lines together, both of which have printing to be done.
The INPUT line prints the question mark. We shall see later where two long lines starting

with PRINT can be connected together by the trailing semicolon so as to print on the same
line.

Your Radio Shack TRS-80 Interpreter is, as has been mentioned, able to speak "The King's
Basic" as well as a variety of dialects. The first of the many "short-cut" dialects we will be
exploring throughout these lessons involves combining PRINT and INPUT into one state-

ment. Change line 5 to read:

5 INPUT " THE VALUE I WISH TO GIVE A IS" *, A

then delete line 10 by typing

10

then RUN.

The results come out exactly the same, don't they? Here is what you have changed:
1. PRINT to INPUT
2. Both statements on the same line

3. Eliminated the extra line

In the long programs which you will be writing, running and converting, this shortcut

will be valuable.

Up to now, all our programs have been strictly one-shot affairs. You type RUN , the

Computer executes the program, prints the results (if any) and comes back with a READY ,

To repeat the program, you have to type in RUN again. Can you think of another way to

get the Computer to execute a program two or more times?

34

teterttreter — is the internal circuit that allows you
t& "tallr" to tb»$R&dD In English (BASIC) and P--

it can talk to you.

Sometimes the word dialect is used when talking

about the different forms of a computer language,

Jfust as with dialects ha "human" Sanguages, there ..,

can be slight differences in word uses, etc. in

BASIC. (Radio Shack's BASIC is totally com-
;

-

;

patibie with the Dartmouth BASIC— the Original

BASIC. But we do have some handy short cuts,

so we might etui them a "dialect",) Well some-
times reler to this as a shortcut and sometimes as?

a dialect.

N$ — don't enlarge the program by repeating its u
ste^s over and oser again — that's not very

.creative!- ;:^,V

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


We'll answer that question by upgrading our Celsius-to-Fahrenheit conversion program
(Chapter 5). If you think GOTO is a powerful statement in everyday life, wait till you
see what it does for a computer program!

Type NEW and the following:

10 REM * IMPROVED CELSIUS TO FAHRENHEIT CONVERSION PROGRAM *

20 INPUT "WHAT IS THE TEMPERATURE IN DEGREES CELSIUS" ;C

30 F = (9/5)*C + 32

40 PRINT C; " DEGREES CEL S I US = ";F[ " DEGREES FAHRENHE I T .
"

50 GOTO 20

and RUN .

The Computer will keep on asking for more until you get tired or the power goes off (or
some other event beyond its control). This is the kind of thing a Computer is best at —
doing something over and over again. Modify some of the other programs to make them self-

repeating. You'll find they're much more useful that way.

These have been 7 long and "meaty" lessons, so go back and review them all again, repeat-
ing those assignments where you feel weak. We are moving out into progressively deeper
water, and it is complete mastery of these fundamentals that is your life preserver.

Learned in Chapter 7

Statements

INPUT
and
INPUT with built-in PRINT

"''- ':'.',"','.,

Miscellaneous

; Trailing semicolon

Twill have to hit 1 BREAK) to get ottt of the
program loop.

ft!

K

i

I

" I CAN DO THIS Alt DAY "

35

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

36

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 8

Two Easy Features

The Calculator Mode

Before continuing our exploration of the nooks and crannies of our Computer — acting as
a computer, we should be aware that it also works well as a calculator. If you omit the
line number before certain commands, the Computer will execute them, print the answer on
the screen, then erase the command you entered. What's more, it will work as a calculator
even when a computer program is loaded, without disturbing that program. All you need, to
be in the calculator mode, is the prompt >,

Example: How much is 3 times 4? Type in

PRINT 3*4

. . . the answer comes back

12

Example: How much is 345 divided by 123?

PRINT 345/123

. . . the answer is

2

.

80488

Spend a few minutes making up routine arithmetic problems of your own, using the calcula-
tor mode to solve them. Any arithmetic expression you might use in a program can also be
evaluated in the calculator mode. This includes parentheses and chain calculations like
A*B*C.

Try the following problem:

PRINT ( 2/3 )
* { 3/2

)

The answer comes back:

1 .0000009

37

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


What? A number times its reciprocal is supposed to equal 1 exactly. So what gives? You

have discovered the Computer's limit of accuracy. Just like a calculator (or a person), a

computer can never be perfectly accurate all the time. For short arithmetic expressions, the

TRS-80 is accurate to the fifth or sixth decimal place. In longer, more complex expressions,

a minute error in the sixth place can be magnified to where it becomes significant. All pro-

grammers have to cope with this kind of built-in error. We'll discuss one way of handling it

in a later chapter.

Calculator Mode for Troubleshooting

Suppose a program isn't giving you the answers you expect. How can you troubleshoot the

program? One way is to ask the Computer to tell you what it knows about the variables

used in the resident program.

Example: PRINT X. The Computer will tell you what the present value of X is.

Another thought: Something is stored in every memory cell {even if YOU have not put

anything there). Enter and RUN this instruction in the calculator mode:

Comdex programs.

dpmmlndasyoit get into more

v>-i-.- ::-'" '.'"-'t' '.'.."";

PRINT A,B,C,D,E,F T
G,H,I,J,K,L,M,N,0,P,Q,R t

S,T,U,V,W,X,Y,Z

The answers depend on the values last given those variables — even from much earlier pro-

grams. If you turned off the Computer since last using some of the variables, the numbers

stored in those locations will be completely arbitrary and meaningless.

The Memory Command

Since the programs you write do occupy space in the Computer's memory, and program

size is limited to how much memory you have purchased, it may be important to know how

much memory you are using for a given program. That's what the Memory Command is for.

The least amount of memory available in the TRS-80 is 4K. This means there are about

4,999 different memory locations to store and process your programs. (Actually, 4096.)

(If you have 8K of memory, the number is 8192; for 16K it is 16384.)

This manual is meant to be forth* computer »
operator and programmer, so we are studiously

avoiding computer efeetronies theory — ^whea

possible. Owners interested in that phase of this

interesting subject are referred to their locaf

Radio Shack store for books which specifically
:

addressitJ .

-;: ':':.:,'.

To get some idea what this means, type:

NEW

PRINT MEM

38

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


. . . and the answer will be

3583

With no program loaded, there are 3583 memory locations available for use. The difference

in memory space between 3583 and 4096 is set aside for processing programs and overall

management and "monitoring" of what the Computer is doing.

Type in this simple program:

10 A = 25

then measure the memory remaining by typing

PRINT MEM

. . . the answer will be

3573

The program you entered took 3583 — 3573 = 10 bytes of space. Here is how you can
account for it:

1. Each line number and the space following it (regardless of how small or large that line

number is) occupies 3 memory cells. The "carriage return" at the end of the line takes

1 more byte, even though it does not print on the screen. The memory "overhead" for

each line, short or long, is 4 bytes.

2. Each letter, number and space takes 1 byte.

In the above program 4 + 6 = 10 bytes.

Enter this additional line, leaving in line 10, and calculate the amount of space remaining in

memory. Then check it with the PRINT MEM command.

20 PRINT "THIS EXAMPLE IS TH MEASURE MEMORY USAGE."

How much space is left in memory???? ..

Answer: Line 10 took up 10 bytes. Line 20 takes 4 bytes for "overhead" + 48 characters

52 bytes. 52 + 10 = 62 bytes, 3583 — 62 = 3521 bytes. Type

CJR01S: H you don't get this answer (fosr example as
:very large number or one wiih a — iait^iurn tfte /

Computers POWER off for at least 1$ second
and then turn it on again. Try PRI NT MEH
once more. [If your TItS*330 has more RAM, you >

can expect a larger number, as follows:

. 8K RAM: 7679 :.:^-M
:;.^i^RAMpi^7!^;-- '-;:; >^f!>:.-

.
::^ ;

'

;

;

;

4j

:-$ifte
:

T7T
:
fe the basic unit of storage for most l „ ...

:;iJsteis; normally it is considered as a staring of eight-;

binary digjts (MtsjL Thus a byte =?. 8 bits.

39

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


PRINT MEM

... to see if you agree.

Obviously, the short learning programs we have been writing so far are not taking a lot of

memory space. This changes quickly, however, as we move to more sophisticated program-

ming. Make a habit of typing PRINT MEM when completing a program to develop a sense

of its size and memory requirements.

The third and final error message is

SORRY

It means "Sorry — you have run out of memory locations and must either cut down the pro-

gram size or purchase additional memory." With some practice you will be able to predict

how much memory a given program will need. All lessons and programs furnished with

Radio Shack's LEVEL I system will run in the "4K" of memory you have available.

'<':>-Y^;-'"-^± '-' ;- --:... :
- rJC",. { „.-;-,. i.,:.,. <.„.-. v.: - "

f
^jrV ?,:" - ^i%^ i.'.'-

":':.:'"' ''-: ,:'--- -.-,;''"';.':'' ':', '"'''.
-,','." '' '"i"' :

RetaemiHsr the others?

WWHAT? - Mld6«^ar^retarid'M//irye«waBt.'* :

''Vfl MQW2 — "I itnderst&Rd what you are telling me, v

..;;

:

;V but I dont kmwHQW i^de;%wV-'-^^'-:
:

.'.
v-.i

i-v.;^;^;'*-^:^'-;

Learned in Chapter 8

commands

PRINT MEM

Miscellaneous

Calculator Mode

Memory

Byte

SORRY

40

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 9

Using Cassette Tape

We will soon write and run long and powerful programs. It becomes tedious to type them
in accurately just once, let alone each time we want to use them. Impressing your friends

with this new super-whazzoo Computer is somewhat more difficult if they sit watching old

TV reruns of Star-Trek while you take an hour or so to type in a program. There has to be
a better way.

The TRS-80 has a built-in "Cassette Tape Interface" which allows you to record and store

any program on high quality cassette tape. A full "4K" of memory can be dumped onto
tape, or loaded from tape, in about 3 minutes. Most programs are shorter and take even less

time. That isn't even enough time to get through the deodorant ads. Besides building up
your own tape library of computer programs, you can exchange favorite programs with
other TRS-80 owners by exchanging tapes.

Recording

Only a little practice is required. Follow the yellow brick road:

1. Locate the Recorder, Interconnecting Cable and Radio Shack Computer Recording
Tape cassette.

2. Connect the short cable between the TAPE jack on the back of the TRS-80 and your
Cassette Tape Recorder:

A. The small gray plug goes into the REM jack on the Recorder.
B. The large gray plug goes into the AUX jack.

C. The black plug goes into the EAR jack,

3. Plug the Recorder into the wall outlet (or install batteries).

4. Type any program into your Computer, preferably one that is at least several lines

long. RUN it to be sure it is entered correctly.

5. Load the cassette tape and press the PLAY and RECORD buttons at the same time
until they lock.

6. "Dump" the program onto tape by typing the command:

CSAVE

The motor on the Recorder will start and you'll be recording the Computer's program
onto tape.

Watch the Video screen. When

Back at the beghijamg of this:Manual we gave a
procedure fo* connecting and using the Tape
Recorder (remember. , .that was for aS the tm
wtientonesl), ket'stafcrouHSSMfwith thfe-

Chapter to be sure we've covered EVBRYON

Dumped and loaded are everyday terms used _.

computer people for storing and "playing back"
computer programs (onto tap? and from tape)

KQTE: A:"dummy:plu:g" is provided with Radio;
Shaefc*s CT&41 — you must plug this into tie - ;

:

MIC jack ob the CTR-41 (this prevents sound picks

up from the buift-in Mic when, "dumping" your
TR&8® programs onto tape^

. CSAVE jstod^for^&aJY^oH-.Cassette,*
'-..

'
,

41

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


READY

>-

returns and the motor stops, your program is recorded on tape. It is also still in the

Computer's memory. It has only been "copied" out.

7. Disconnect the small plug from the Recorder's REM jack and Rewind the tape. Dis-

connect the black plug from the EAR Jack and Play the tape so you hear what digital

data sounds like. Sounds terrible, doesn't it? You were expecting maybe Lawrence Welk?

Loading

Reversing the process and loading (copying) the program from tape into the Computer is

just as easy.

1. Be sure the tape is fully rewound and the plugs are all in place.

2. Push down the PLAY button until it locks. Set the Volume control to about 7-8.

3. Type NEW (to clear out any existing program).

4. Type the command

CLOAD

The Tape Recorder's motor will start and data will flow from the tape into the Com-

puter's memory at the rate of about 1200 bytes per minute.

As soon as the Computer senses the data, it will flash a * on the screen; then as it accepts

each line of data, a second * will flash on and off.

Watch the Video Display. The program is entered when

READY

>-

returns and the recorder motor stops.

4. RUN the program to see that the data transfer was successful. In the rare event that it

was not, repeat the above steps, being sure that all cables are properly connected, the

Volume is set to 7-8 and the tape recorder heads are clean. {Listen to the tape to be

sure there was a program on it.)

Miscellaneous Tape Palaver

To minimize the chance of hitting a "soft spot" on a tape, where the oxide may be thin or

have flaked off, experienced operators routinely do a "double dump" when copying from

42

IMPORTANT: Too little volume wffi cause a bad
:

'v'

:

"data dump": too much volume may result in :

..

.

% distortion in the Tape Recorder and also goof-up

.^\tfae;
"d«J]ip" ::.;.:.::-: • ....-... ...:•..:•; ]}""'

CLfJAB stands for"Load^ron* Cassette*

The* ^display ^seeondone flashing) isa fool- /

proof indication that data is being loaded onto-the

ftOTE: If flue recorder does not -slap-, reach around

the back of the Computer, opfeir the door at the

left rear and press the Reset butfem inMde^This

will take the -QofHputer mt of the CLGAD or

6gAV*E :mode and return control to the keyboard.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


computer to tape. This simply means copying the program twice on the same tape — one

recording right after the other. On long clumps, one is made in one direction and the other

one in the other direction. For extra safety, especially important programs are recorded on

more than one tape. Failures are rare, and your own experience should be your guide.

You may have noticed that specially wound Radio Shack Computer Tape has no plastic

leader on the ends. This is because when you begin "dumping" data from memory onto tape

there must be real live tape there to record it.

Radio Shack's Computer Tape is of high uniform quality, selected especially for its low

"drop out" characteristics. If one little bit of data is lost the entire program can be lost.

This Tape is wound in shorter than usual lengths, with the C-10 being standard. It will

record 5 minutes in each direction — far more than enough for the majority of programs.

Your entire 4K of memory can be recorded on one side of the C-10, with the other side

quickly available for another program without need for a long rewind.

Experienced "computerists" have found from experience that it is better to use a separate

cassette (or at least a separate side) for each program rather than try to search through long

tapes for a desired program. Since computer data on tape is not readable by the human ear,

separate cassettes solve the problem. Computer Tape, tape racks and other recording acces-

sories are available at your local Radio Shack store.

When you are not using the Recorder for loading or recording, do not leave RECORD or

PLAY keys down (press STOP).

Do not expose recorded tapes to magnetic fields. Avoid placing your tapes near the Power
Supply,

Do not attempt to re-record on a pre-recorded Computer data tape. Even though the new
recording process erases the old recording, just enough information may be left to confuse

the new recording. If you want to use the same tape a second or third time, use a high-

quality bulk tape eraser to be sure you erase old data.

If you want to save a taped program permanently, break off the Erase Protect tab on the

Cassette (see the Tape Recorder's Manual). When the tab(s) has been broken off, you can

not press down the RECORD key on your Recorder (this will keep you from accidentally

erasing that tape).

Ground Loops

With some recorders, if you leave the Earphone and Aux jack connected at the same time,

when you make a recording, you'll end up with a hum added to the program (you can hear

it between double-dumps). This is caused by a ground loop in the Recorder and cables. To
avoid ground loop problems, keep only the Farphone or the Aux plug connected BUT NOT
BOTH.

Normal audio tape life lead-ins on both endar
;

:;UB
(typically blue nan-magnetic mylar material) — •;

you cart not record on the leader portion of tapes.

Advance the tape past the leader before recording

a program.

If you record programs on long, standard audio
cassettes, use the Tape Recorder's Counter to aid

you in locating programs,

Ground loop is an electronic tetm which meahs
there are two separate gronnd connections,
each being slightly different — the result typically

is hum (and you don't want or need that).

43

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Learned in Chapter 9

**(program loading

indicator)

44

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 10

From >to FOR-NEXT ... or SMART Loops

A major difference between the computer and a calculator is the computer's ability to do

the same thing over and over an outrageous number of times, faster than a speeding bullet

(to coin a phrase)! This one capability more than any other, separates the two.

The FOR-NEXT loop is of such overwhelming importance in putting our Computer to

work, that few of the programming areas we will explore from this point on will exclude

it. Its simplicity and variations are the heart of its effectiveness, but its power is truly

staggering.

Type in the following program, andRUN :

10 PRINT "HELP MY COMPUTER HAS GONE BERSERK!"

20 GOTO 10

You have noticed by now that the Computer is continuously writing the line HELP
MY COMPUTER HAS GONE BERSERK ! It will continue to do so indefinitely until you
tell it to stop. When you have seen enough, hit the |BREAKj key.

What we created is called an "endless loop", (Remember our earlier programs which kept

coming back for more INPUT?) Line 20 is an unconditional GOTO statement which causes

the Computer to cycle back and forth ("loop") between lines 10 and 20 forever if not halt-

ed. This idea has great potential if we can harness it.

Let's modify the program to read:

8 FOR N = 1 TO 5

10 PRINT "HELP MY COMPUTER HAS GONE BERSERK!"

20 NEXT N

30 PRINT "NO IT'S UNDER CONTROL."

and it.

45

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


ThelineHELP MY COMPUTER HAS GONE BERSERK ! was printed 5 times, then

NO IT'S UNDER CONTROL. The FOR-NEXT loop created in lines 8 and 20
caused the Computer to cycle through lines 8, 10 and 20 exactly 5 times, then continue
through the rest of the program. Each time the Computer hit line 2(9 it saw "NEXT N."
The word NEXT caused the value of N to be increased (or STEPped) by exactly 1, and the

Computer unconditionally sent back to the FOR N = statement that began the loop. The
NEXT statement is conditional on N being less than 5, because line 8 says FOR N = 1 TO 5.

After the 5th pass through the loop, the built-in test fails, the loop is broken and the pro-

gram execution moves on. The FOR-NEXT statement harnessed the endless loop!

The STEP function

There are times when it is desirable to increment the FOR-NEXT loop by some value other

than one. The STEP function allows that. Change line 8 to read

8 FOR N = 1 TO 5 STEP 2

. . . and RUN.

Line 10 was printed only 3 times (when N=l, N=3 and N=5). On the first pass through the

program, when NEXT N was hit, it incremented {or STEPped) the value of N by 2 instead

of 1. On the second pass through the loop N equalled 3. On the third pass through N equal-

led 5.

FOR-NEXT loops can be stepped by any whole number, even negative numbers. Why one
would want to step with negative numbers might seem rather vague at this time, but that

too will be understood with time. In the meantime, change the following line

8 FOR N = 5 TO 1 STEP -1

. . . and RUN.

Five passes through the loop stepping down from 5 to 1 is exactly the same as stepping up
from 1 to 5. Line 10 still got printed 5 times.

Modifying the FOR-NEXT loop

Suppose we wanted to print both lines 10 and 30 five times, alternating between them. How
would you change the program to accomplish it? Go ahead and make the change.

46

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


§

HINT: If you can't figure it out, try moving the NEXT N line to some other position.

Right — you moved line 20 to line 40 and the screen reads:

HELP MY COMPUTER HAS GONE BERSERK!

NO IT'S UNDER CONTROL.

HELP MY COMPUTER HAS GONE BERSERK!

NO IT.S UNDER CONTROL

. . . etc. — 3 more times.

How would you modify the program so line 10 is printed 5 times, then line 30 is printed 3

times? Make the changes and RUN.

The new program might read:

8 FOR N = 1 TO 5

10 PRINT "HELP MY COMPUTER HAS GONE BERSERK!"

20 NEXT N

25 FOR M = 1 TO 3

30 PRINT "NO IT'S UNDER CONTROL."

40 NEXT M

iH

47

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


We now have a program with two controlled loops, sometimes called DO loops. The first

do-loop DOES something five times; the second one does something three times. We used

the letter N for the first loop and M for the second, but any letters can be used. In fact,

since the two loops are totally separate we could have used the letter N for both of them -

not an uncommon practice in large programs where most of the letters are needed as

variables.

RUN the program, being sure you understand the fundamental principles and the varia-

tions we have introduced.

From>to Incrementing

There is nothing magic about the FOR-NEXT loop, in fact, you may have already thought

of another (longer) way to accomplish the same thing by using features we learned earlier.

Stop now, and see if you can figure out a way to construct a workable do-loop substituting

something else in place of FOR and NEXT.

Answer:

8 N = 1

10 PRINT "HELP MY COMPUTER HAS GONE BERSERK!"

15 N = N + 1

20 IF N<6 THEN 10

30 PRINT "NO IT'S UNDER CONTROL .

"

We say that line 8 initializes the value of N, giving it an initial or beginning value of 1. Be-

fore initializing to the value we want, N could have been any number left over from a pre-

vious program.

Line 15 then increments it by 1, making N one more than whatever it was before. Line 10

uses one of our relational operators,<, to see that the new value of N is within the bounds

we have established. If not, the test fails and the program continues.

48

Initializes — initially, or at the beginning, sets the

value of one of our variables {or starts a program
baek atthe beginning).

Increments — steps (Increases or decreases values

in specific stepsi by %% 3% :
5 V,'orwhatever). ":"•;

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Note that in this system of incrementing and testing we do not send the program back to

line 8 as was the case with FOR-NEXT. What would happen if we did?

Answer: We would keep re-initializing the value of N to equal 1, and would again form an

endless loop.

The opposite of incrementing is decrementing. Change the program so line 15 reads

15 N = N - 1

. . . then make other changes as needed to make the program work.

Answer: The changed lines read:

8 N = 6

15 N = N - 1

20 IF N> 1 THEN 10

Putting FOR-NEXT to work

It isn't very exciting just seeing or doing the same thing over and over, so there has to be a

more noble purpose for the FOR-NEXT loop. There are — many of them, and we will be

learning new uses for a long, long time.

Let's suppose we want to print out a chart showing how the time it takes to fly from Boston
to San Diego varies with the speed at which we fly. Remember, the formula is D = R*T.
Let's print out the flight time required for each speed between 200 niph and 1000 mph,
in increments of 200 mph. The program might look like this:

10 REM * TIME VS RATE FLIGHT CHART *

20 CLS

irs !.i;is«jH|||ii..
.
. . .:, -.

To decrement is to make smaller.

49

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


30 D = 3000

40 PRINT " BOSTON TO SAN DIEGO "

50 PRINT

60 PRINT "RATE (MPH)", " T I ME { HOURS )
"

, " D I STANCE C M I LES )
"

70 PRINT

80 FOR R = 200 TO 1000 STEP 100

90 T = D/R

100 PRINT R ,T,0

110 NEXT R

Enter the program and RUN.

It is really solving the problem from Chapter 3 nine times in a row, for different values, and

printing out the result. Your screen should look like this:

BOSTON TO SAN DIEGO
RATE (MPH) TIME (HOURS) DISTANCE ( MILES )

200 15 3000

300 10 3000

400 7.5 3000

500 6 3000

600 5 3000

7 00 4 .28571 3000

800 3. 75 3000

900 3 . 33333 3000

1000 3 3000

50

Haw about tbat , , . ? Try doing that on the old

slide Bdeetbandcafamfetorl .

;;;• :-v\~^.i
: ^

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Analyzing the Program

Look through the program and observe these many features before we do some exercises to

change it:

1. The REM statement identifies the program for future use.

2. Line 20 uses the CLS (Clear Screen) statement to erase the screen so we have a nice

clean place to write on. It allows us to write in a top down manner. Run the program

later leaving out this line and see what is meant by the scroll mode, CLS is a very un-

fussy statement which you will want to use often just to make your printouts neat and

impressive.

3. Line 30 initializes the value of D. D will remain at its initialized value,

4. Line 40 prints a chart heading which is indented and double spaced for appearance,

5. Lines 50 and 70 use blank PRINTs to insert spaces in the chart.

6. Line 60 prints the chart column headings, and uses automatic zone spacing to place

those headings (the comma).

7. Line 80 establishes theFOR-NEXT loop complete with a STEP. It says — initialize the

rate (R) at 200 mph, and make passes through the "do-loop" with values of R incre-

mented by values of 100 mph until a final value of 1000 mph is reached. Line 110 is

the other half of the loop.

8. Line 90 contains the actual formula which calculates the answer.

9. Line 100 prints the three values. They are positioned under their headings by automat-

ic zone spacing (the commas),

10. Lines 90 and 100 are indented from the rest of the program text. This is a simple

programming technique highlighting a do-loop which makes reading and trouble-

shooting easier. You will see it used increasingly as we move on. Try to adopt good
programming practices like this as you do the exercises. Indenting does take up a little

memory space, and on long programs in their final form it is often omitted.

Take a deep breath and go back over any points you might have missed in this lesson. Copy
the program onto your Computer Cassette Tape because we will use it in the next Chapter

continuing our study of FOR-NEXT loops.

CLS in a program does the same thing as the
|ct£AR| Key on the keyboard (but you cant use
the (clear] Key as part of a program).

Remember zone spacing? n^Tite'
:comma {,} inW-

:

FEINT statement automatically starts the prjntisg

=;jS;t&e next IS-spacfeiprint zone. ;='

51

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


X ".:" ' '
;

'

Learned in Chapter 10

Miscellaneous

FOR-NEXT Increment

CLS Decrement

STEP Initialize

|BREAK| key

|CLEAR Kev

"Top down" Display

"Scroll" Display

"Do-Loop"

52

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 11

Son of FOR-NEXT

This is heady stuff. If you turned off the Computer between Chapters, load the program

which you taped from Chapter 10 into the Computer.

Modify the program so the rate and time are calculated and printed for every 50 mph incre-

ment instead of the 100 mph increment presently in the program, RUN.

Answer: 80 FOR R = 200 TO 1000 STEP 50

Trouble in the Old Corral

What a revolting development! The printout goes so fast we can't read it, and by the time it

stops, the top part is cut off. Aught 'a known you can't trust these computers.'

Solutions For Sale

Several solutions are available:

1. Pressing nearly any key will stop program execution. Try RLJNning a number of times,

pressing different keys (and the space bar) during the run, to see what happens.

RUN again, this time using only the + (up-arrow), to freeze the display. Nifty — huh?
Clean stop — clean restart. This is the key to use for temporary freezes.

2. If you want a classy display you can build a "pause" into the program. The screen

will fill, halt a moment, and automatically go on if you don't interrupt the program.

The Timing Loop

In order to learn about the timer loop, let's employ another sly trick. We're going to leave

our "Flight time" program in the Computer, and put in a second program.

As-.you can see, pressing a ksy not only stops execu-

tion but inserts its own letter of number. Messy! i- "ii"

There's- ffppthe* one:

y

ou em try — but it'&not.a

vswry useful oae ; press [break; key. That's even

jjiessier than the fitst one. (To restart after a

[break]
, either enter RUN to start program ail

over again or CONT -to continue execution *t ..
;-.

ther "break-point ,f

)

53

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Start by typing

9 END

We are going to use the space in lines 1 through 8 to write and experiment with a second

little program, and want it to END without plowing ahead into the "Flight" program.

The Egg Timer

It takes time to do everything. Even this foxy box takes time to do its thing, though you
may be awed by its speed. Type this:

1 PRINT "DON'T GO AWAY"

2 FOR X = 1 TO 5000

3 NEXT X

5 PRINT " TIMER PROGRAM ENDED."

... and RUN

How long did it take? Well, it did take time, didn't it? About 10 seconds? The Computer
can do approximately 500 FOR-NEXT loops per second. That means, by specifying the

number of loops, you can build in as long a time-delay as you wish.

Change the program to create a 30-second delay. Time it against your watch or clock to see

how accurate it is.

Answer: 2 FOR x = 1 TO 15000

EXERCISE 11-1: Using the space in lines 1 through 8, design a program which asks you
how many seconds delay you wish, allows you to enter a number, then executes the delay

and reports back at the end that the delay is over, and how many seconds it took, A sample

answer is in Part B.

54

Remember back when we told you hot to do this

(number lines directly in sequence}*? Well.,,

ifwe hadn't followed that rule we wouldn't have

this nice space to demonstrate the point

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


How to Handle Long Program Listings

We've got two programs in the Computer now. Let's pull a LIST to look at them. My, my
— they are so long we can't see the end. Now what do we do?

Again, more than one solution. The easiest way to see the rest of the listing is to use the

4 (up-arrow) key. Each time you press it (go ahead), the listing moves up one line. Pretty

exciting, huh? Keep pushing it until you get a prompt ( >).

The other solution is to use a slightly more sophisticated version of LIST. It's called

LIST## # (however you pronounce that!). Type:

LIST 50

A little scrutiny immediately discloses that the Computer gave a listing starting with line 50
and either 1) filled the screenwith 16 lines, or 2) went from line 50 to the end of the
program, whichever came first.

LIST### and + (up-arrow) can be used to find any part of a very long program you wish.

Again, you must have a prompt in order to continue on and do anything else. Aside from
using one (or both) of the above techniques to get to the end of the LIST and find a

prompt, there is a quicker way, once you've found what you want in the list. Simply hit the

l=t^m;i key once or twice to get a prompt.

;
A$' a: matter of fact, you HAVE to keep pushing
it, or do something else to get tlie prompt, sirice

without the prompt it just Isn't yourtunu

The ###*s ;*epre$eirt : iheiaumber of the line you
want th* LISTing to start from.

55

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Is There No End to This Magic?

We now have 2 separate programs resident in the computer. We know how to run the first

one — we just typeRUN. To run the second one we have a foxy variation on RUN called

RUN ##tt

. . . and, as you might suspect, it is similar to LIST###. To RUN the program starting with

line 10, type

RUN 10

. . , and that's just what happens.

Will wonders never cease? If you have 20 or 30 programs in the computer at the same time,

you can RUN just the one you want, provided you know its starting line number. What's

more, you can start any program in the middle (or elsewhere) for purposes of trouble-

shooting — a matter we will become more involved in as our programs get longer and more
complicated.

Meanwhile, Back at the Ranch

We got into this whole messy business trying to find a way to slow down our run on the

flight times from Boston to San Diego. In the process we found out a lot more about the

Computer and learned to build a timer loop. Now let's see if we can build a timer loop into

our big program. First, let's erase the test program using lines 2, 3, 4, 5, 6, 7, & 9 by typing

each of those numbers followed with l^ || ^ jjf
.

One way to stop the fast parade of information in our chart is to put in a STOP. Type in

85 IF R = 600 STOP

... and RUN.

We know R is going to increment to 600, and that's about half way through the chart, so

600 is a good choice. See how the chart ran out to 550 mph then hit the stop at 600 came
racing down to line 85. Your screen should read the first part of the chart and

BREAK AT 85

This means the program is stopped, or broken at line 85. You can now gaze at the top half

of the chart to your heart's content. To restart the program merely type

CONT

56

Again^thfr ##* s represent t&e number of ifce line

you want the RUN to^tart with.

V

'MAGICIAN'

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


. . . and it will automatically pick up and print the rest of the chart, or until it hits another
stop you may have placed.

At Last

Our ultimate plan is to build a timer into the program so as not to completely STOP execu-
tion, but merely delay it so we can study the display.

Type

85 IF R<> 600 THEN 90

87 FOR X = 1 TO 500

88 NEXT X

... and RUN

Hey! It really works! As long as R does not equal 600 the program skips over the delay loop
in lines 87 and 88. when R does equal 600, the test "falls through" and lines 87 and 88
"play catch" 500 times, delaying the program's execution for about one second.

It's been a long and tortuous route with numerous scenic side trips, but we finally made it.

Now that you have picked up so many smarts in these two lessons on FOR-NEXT, it's your
turn to put them to work.

EXERCISE 11-2: Modify the resident program so that ( MPH ) appears below RATE,
(HOURS) appears belowTIME and (MILES) appears below DISTANCE , This one
should be a breeze for you.

EXERCISE U-3: Design, write and run a program which will calculate and print income at

a yearly, monthly, weekly and daily rate, based on a 40-hour week, a l/12th-year month,
and a 52-week year. Do this for yearly incomes between $5,000 and $25,000 in $1,000
increments. Document your program with REM statements as necessary to explain the
equations you create;.

Same: of our programs am becoming* jitfietoo

long for us to leave space in the manual for you to
write

;la your idfel*. ihroffi now on, use the pad of
Fto'grammmg paper for working up your asWeis^

57

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 11-4: Here's an old chestnut that the Computer really eats up: Design, write

and run a program which tells how many days you have to work, starting at a penny a day,

so if your salary doubles each day you know which day you earn at least a million dollars.

Include columns which show each day number, its daily rate, and the total income to-date.

Make the program stop after printing the first day your daily rate is a million dollars or

more.

The "Brute Force" Method (Subtitled: Get a Bigger Hammer)

Much to the consternation of some teachers, a great value of the Computer is its ability to

do the tedious work involved in the "cut and try", "hunt and peck" or other less respect-

able methods of finding an answer (or attempting to prove the correctness of a theory,

theorem or principle). This method involves trying a mess of possible solutions to see if one

fits, or find the closest one, or establish a trend. Beyond that, it can be a powerful learning

tool by providing gobs of data in chart or graph form (later) which would simply take too

long to generate by hand.

EXERCISE 11-5: You have a 1000 foot roll of fencing wire and want to create a rectangular

pasture.

Using all of the wire, determine what length and width dimensions will allow you to enclose

the maximum number of square feet? Use the brute force method; let the Computer try

different values for L and W and print out the Area fenced by each pair of L and W.

The formula for area is Area = Length times Width
or A = L * W

EXERCISE 1 1-6: EXTRA CREDIT PROBLEM FOR "ELECTRONICS TYPES"

As a furtner example (more complex and tends to prove the point better) try this final

(optional) assignment in this lesson. It involves a problem confronted by every electricity

student who has studied sources (batteries, generators) and loads (lights, resistors). It is the

MAXIMUM D.C. POWER TRANSFER THEOREM which states, "Maximum DC power is

delivered to an electrical load when the resistance of that load is equal in value to the

internal resistance of the source." And then the arguments begin . . . "Use a high resistance

load because it will drop more voltage and accept more power." "No, use a low resistance

load so it will draw more current and accept more power". "Use a load which is somewhere

in between."

58

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Don't necessarily shy away from this one if electricity doesn't happen to be your bag.

Enough information is given tq write the program, and the principle, the optimizing of a

value, is applicable to many fields of endeavor and is little short of profound.

With the values given in the schematic, design, write and run a program which will try out
values of load resistance ranging from 1 to 20 ohms, in 1 ohm increments, and print the

answers to the following:

1. Value of Load Resistance (from 1 to 20 ohms)
2. Total circuit power (circuit current squared, times source voltage) I

2 * 10
3. Power lost in source (circuit current squared, times source resistance) l

1 * 10
4. Power delivered to load (circuit current squared, times load resistance) I

2 * R
Note: Circuit current is found by dividing source voltage (120 volts) by total circuit

resistance (load resistance + 10 ohms source resistance). Everything follows Ohms Law
(V = I*R) and Watts Law (P = I*V)

GOOD LUCK!!!! Don't look at the answer until you've got it whipped.

120 VOLTS I

MHMMMKHimmHi
59

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Learned in Chapter 1

1

Commands

LIST###

RUN###

CONT

Statements

STOP

Miscellaneous

Timer Loop

+ Up-Arrow

"Brute force" or

optimizing method

60

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 12

From >to TAB

After those last lessons let's take an easy one.

We already know 3 ways to set up our output PRINT format.

We can:

1. Enclose what we want to say in quotes, inserting blank spaces as necessary.

2. Separate the objects of the PRINT statement with semicolons so as to print them tight-

ly together on the same line.

3. Separate the objects of the PRINT statement with commas to print them on the same

line in the four different print "zones."

A fourth way is to use the TAB function, which is similar to the TAB on a regular type-

writer. It is especially useful when the output is columns of numbers with headings. Type in

the following program and RUN:

10 PRINT TAB ( 5 ) ;
" THE "

; TAB ( 20 ) ;
" TOTAL "

5 TAB ( 35 ) ;
" SPENT "

20 PRINT TAB(5) ; "BUDGET" ; TAB< 20) ; "YEAR'S" ; TAB ( 35 ) ; "THIS"

30 PRINT TAB C 5 ) ; "CATEGORY " ;TAB( 20 ) ; "BUDGET "
s TABC 35 ) ; "MONTH

The RUN should appear:

THE TOTAL SPENT
BUDGET YEAR'S THI S

CATEGORY BUDGET MONTH

EXERCISE 12-1 : Write a program using the three PRINT forms below:

1. PRINT"
2. PRINT"

and
3. PRINT TAB ( );

" ";TAB( );" ";TAB( );"

to set up the headings given in the prior example. Use form 1 for the first line of the head-

ing, form 2 for the second line and form 3 (the TAB form) for the third line.

"YOUR TAB.

HI

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Hint: Since form #1 uses automatic zone formatting and is not adjustable, the other forms

have to be keyed to it.

Whether you follow TAB(##) with a semicolon or comma makes no difference. In either

case, the Computer will start printing ## spaces to the right of the left margin. However, it

is important to remember that whenever numbers or number variables are printed out,

the Computer inserts one space to the left of the number to allow for the — or + sign. Type

and RUN the following:

10 A = 3

20 B = 5

30 C = A + B

40 PRINT TAB( 10) ; "A" ;TAB<20>j "B" ;TAB(30) ;

M C"

50 PRINT TAB( 10) iA)TAB(20) t B ;TAB(30) ;C

It should appear:

A B

Note that the numbers are indented one space beyond the TAB(#). Keep it in mind when

lining up (or indenting) headings and answers.

Change line 20 to read

20 B = -5

. . . and RUN. See why the indenting is necessary?

The Long Lines Division

Have you ever wondered what would happen if you wanted to PRINT a great number of

headings or answers on the same line - but didn't have enough room on the program line

to get in all the TAB statements? You have? Really? You're in luck because it's easy. Type

and RUN the following program:

62

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


10 A = 1

20 B = 2

30 C=3

40 D=4

50 E = 5

60 F = 6

70 G = 7

80 H=8

90 1=9

100 J=10

200 PRINT "A" ; TAB (50) ; "B" ; TAB C 10) ;

m C" ; TAB ( 15) ; "D" ;

210 PRINT TAB C 20 ) ;
" E "

; TAB ( 2 5 ) ;
" F "

j TAB ( 30 ) j
" G "

;

220 PRINT TAB( 35 ) ; "h" ; TAB ( 40 ) j
" I

M ;TAB( 45) ;
" J

"

300 PRINT A;TAB(5 ) ;B;TAB( 10) ;C;TAB( 15) ;D;TAB(20> ;

310 PRINT E ;TAB( 25 ) ; F;TAB( 30) ; G;TAB( 35 ) ; H ; TAB ( 40 ) ;

320 PRINT I t TAB( 45 ) ;

J

It's the trailing semicolon (;) that does the trick. It makes the end of one PRINT line con-

tinue right on to the next PRINT line without activating a carriage return. The combination
of TAB and trailing semicolon allows you almost infinite flexibility in formatting the

output.

Multiple Statement Lines

As our parting shot in this easy lesson, we're going to have a sneak preview of what's ahead.

Replace lines 10 through 100 with the following:

10 A=l :B = 2!C = 3rD =4!E =5:F =6:G = 7:H = 8:I=9:J=10

63

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Egad, Igor — we've created a monster! Will it work'.' RUN find find out.

Worked just the same, didn't it?

Now don't get all carried away, but this is one of many cases where you can put a number

of statements on the same line, separating them with the COLON {:). Be careful, not the

semi-colon. The Computer reads them from left to right, as though each were a separate line

number.

Don't try this trick with IF-THEN statements since there are some special considerations —
but with virtually everything else we've learned so far, including FOR-NEXT loops, it works

fine, saves space, shortens programs and has a lot going for it.

EXERCISE 12-2: Rework the answer to Exercise 11-3 to include the Hourly rate of pay in

the printout. Use the TAB function to have the chart display all 5 columns side by side.

EXERCISE 12-3: (Optional) Rework the special problem 11-6 answer using the TAB func-

tion so the printout includes the internal resistance in a fifth column.

Learned in Chapter 12

Print Moififlers

TAB

MKeeSaneous

Trailing semicolon

Multiple statement lines

64

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 13

Grandson of FOR-NEXT

The FOR-NEXT loop didn't go away for long. It returns more powerful than ever. Enter
this program:

10 FOR A = 1 TO 3

20 PRINT " A LOOP ti

30 FOR B = 1 TO ;
?

40 PRINT ii it ii
* B LOOP"

50 NEXT B

60 NEXT A

. . . and RUN.

The result is:

A LOOP

B LOOP

B LOOP

A LOOP

B LOOP

B LOOP

A LOOP

B LOOP

B LOOP

Fetfe^bMyva^kwabkak spaces In iineW
befbrepR I H T; three in Hoe 3? beforeFOR ; '

torn in 4(t. bejfojcePR J ;N T* aiMUhiee in 5$ before
:NEXT...

:

05

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


This display vividly demonstrates operation of the nested FOR-NEXT loop. "Nesting" is

used in the same sense that drinking glasses are "nested" when stored to save space. Certain

types of portable chairs, empty cardboard boxes, etc. can be nested. They fit one inside the

other for easy stacking.

Let's analyze the program a line at a time:

Line 10 establishes the first FOR-NEXT loop, called A, and directs that it be executed 3

times.

Line 20 prints "A Loop" so we will know where it came from in the program. See how

this program line is indented several spaces to make it stand out as being nested in the

"A" loop?

Line 30 establishes the second loop, called B, and directs that it be executed twice. It is

indented even more so you can instantly see that it is buried even deeper in the "A"

loop.

Line 40 prints two items: first the blank shown between the two quote marks, then the

comma kicks us into the next print zone where "B Loop" is printed. Makes for clear

distinction on the screen between the A loop and B loop, eh?

Line 50 completes the "B" loop and returns control to line 30 for as many executions of

the "B" loop as line 30 directs. So far we have printed one "A" and one "B".

Line 60 ends the first pass through the "A" loop and sends control back to line 10, the

beginning of the A loop. The A loop has to be executed 3 times before the program

run is complete, printing "A" 3 times and "B" 6 times (3 times 2).

Study the program and the explanation until you completely understand it. It's simple but

powerful magic.

mBMBHBmiiMMHBwnn^ i rr

Okay, to get a better "feel" for this nested loop (or loop within a loop) business, let's play

with the program. Change line 10 to read:

10 FOR A = 1 TD 5

... and RUN.

Right! A was printed 5 times, meaning the "A" loop was executed 5 times, and B was print-

ed 10 times - twice for each pass of the "A" loop. Now change line 30 to read

When you write programs, be sure to indent lines

to height nesting (or other lines you want to

emphasize). This helps when reading programs -

and is a great aid when debugging (troubleshooting)

program problems:

30 FOR B = 1 TO 4

. . and RUN.

66

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Nothing to it! A was printed 5 times and B printed 20 times. If you are having trouble

counting A's and B's as they whiz by, you remember what to do. Just press the (+), (+) or

(*•) key to stop execution and temporarily freeze the display. The
I
BREAK) key and typing

CONT do the same thing, allowing hands-off freezing, but inserts a BREAK note and other-

wise messes up the display.

How to goof-up nested FOR-NEXT loops

The most common error beginning programmers make with nested loops is improper nest-

ing. Change these lines:

50 NEXT A

60 NEXT B

... and RUN.

The Computer says:

WHAT?

60 NEXT B?

Looking at the program we quickly see that the B loop is not nested within the A loop. We
have the FOR part of the B loop inside the A loop, but the NEXT part is outside it. This

does not work. A later chapter deals with something called "flow charting", a means of
helping us plan programs and avoid this type of problem. Meanwhile we just have to be
careful.

Breaking out of Loops

Improper nesting is illegal, but breaking out of a loop when a desired condition has been

met is OK, Add these lines:

50 NEXT B

55 IF A = 2 GOTO 100
60 NEXT A

99 END
100 PRINT "A EQUALLED 2. RUN ENDED."

... and RUN.

67

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


As the screen shows, we "bailed out" of the A loop when A equalled 2 and hit the test line

at 55- The END in line 99 is just a precautionary roadblock set up to stop the Computer

from running into line 100 unless specifically directed to go there. That would never happen

in this simple program, but we will use protective ENDs from time to time to remind us

that lines which should be reached only by specific GOTO or IF-THEN statements must be

protected against accidental "hits".

We'll be seeing a lot of the nested FOR-NEXT loop now that we know what it is and can

put it to use

.

EXERCISE 13-1: Enter the original program found at the beginning of this Chapter. It

contains a B loop nested within the A loop. Make the necessary additions to this program

so a new loop called "C" will be nested within the B loop, and will print "C LOOP" 4 times

for each pass of the B loop.

EXERCISE 13-2: Alter the resident program so that it is the same as that found in the

answer to Exercise 13-1.

Make the necessary additions to this program so a new loop called "D" will be nested within

the C loop, and will print "D LOOP" 5 times for each pass of the C loop.

Learned in Chapter 13

Miscellaneous

Nested FOR-NEXT loops

Protective END blocks

68

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 14

The INTEGER function

Integer??? "I can't even pronounce it, let alone understand it." Oh, come, come. Don't let

old nightmares of being trapped in Algebra class stop you now. It's pronounced (in-teh-jur)

and simply means a whole number like 1, or 2 or 3, etc. How difficult can that be? Come
to think of it, some folks make a whole career of complicating simple ideas. We're here to

do just the opposite.

The INTEGER function, INT(X), allows us to "round off" any number, large or small,

positive or negative, into an integer, or whole number.

Type NEW to clear out any old programs, then enter:

30 X = 3. 14159

40 Y = INT(X)

50 PR INT " Y = "
( Y

... and RUN.

The display reads

Y = 3

Oh — success is so sweet! It rounded 3.14159 off to 3. Change line 30 to read:

30 X = -3. 14159

$z

"CAll IT? INTEGER OF COURSE!"

Careful — we're not talking about ordinary round-
ing (what could be ordinary about your Computer?!).
Ordinary rouadirigigiyes us the closest whole
number, whether it's larger or smaller than X.
INT(X), on the other taand*.gives us the largest

whole number which is less than or equal to X, Ass-

yon ?|1 see In this chapter, this is a very versatile ':'';':

form: of rounding — in fact, you can use it topro^ :.

dace the other, "ordinary" kind of rounding.
;

;

... and RUN.

Good Grief! It rounded the answer down to read

Y = -4

What kind of rounding is this? Easy. The INT function always rounds DOWN to the next
lowest WHOLE number. Pretty hard to get that confused! It makes a positive number less

positive, and makes a negative number more negative (same thing as less positive). At least

it's consistent.

m

I
X
B

NOTE: LEYEL1 BASIC allows the 1NT(X) func-
tion to work only, with numbers larger than
-32767 and smaller than +32767. LEVEL 2 ;

BASICremoves this restriction. Use of a value of;

X outside this range causes the Computer to halt

execution and ask HOW? ,.

'-'''.-. ,M.

69

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Taking it a line at a time:

Line 30 set the value of X (or any of our 26 alphabet^oup variables) equal to the value

we selected, in this case n.

Line 40 finds the INTEGER value of the above number and assigns it a variable name. We
chose Y.

Line 50 prints a little identification (Y=) followed by the value of Y.

Not Content to Leave Well Enough Alone

We can do some foxy things you probably never thought of by combining a FOR-NEXT

loop with the INTEGER function.

Change the program to read

:

30 X = 3. 14159

40 Y = INT(X)

50 Z = X - Y

60 PRINT " X = " ;X

70 PRINT i
" Y = " jV

80 PRINT " Z = " tZ

... and RUN.

AHA! I don't know what we've discovered but it must be good for something. It reads:

X = 3. 14159

Y = 3

Z = . 141589

We've split the value of X into its Integer (whole number) value and called it Y, and its

decimal value and called it Z.

Line 60, 70 and 80 merely printed the results.

Hold the phone!!!

Oh — oht Why doesn't Z equal the exact difference between X and Y? Where did that

"8" come from in the decimal value?

70

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


It has nothing to do with the INT function. Back in Chapter 8 we talked a little about

the Computer's accuracy (you always have to watch the accuracy of the last decimal place

or two). TRS-80 users who have LEVEL II Basic will not notice this routine "rounding

error". If we solved all the world's problems with the bottom-of-the-line machine you
might not want to upgrade to the higher power models, and one doesn't stay in business

long that way, does one?

There is a way to control the accuracy of your results in LEVEL I BASIC. It involves

artificially rounding your fraction to the desired number of decimal places, and then forc-

ing the Computer to print out only those digits which are "properly rounded".

For example, suppose you only need n to three places. (Of course, you can enter it as 3.142,

but that's not the point.) Type NEW , then enter and RUN the following program:

10 X=3 .14159
20 X=X+.0005
30 X=INT{X*1000>/1000
40 PRINT X

Try using other values for X (just make sure X*1000 isn't too large for the INT function to

handle).

It's easy to change the program to accomplish rounding at a different point. For example,

to round X off at the hundredths -place (2 digits to the right of the decimal point), change

lines 20 and 30 to read:

20 X=X+.005

30 X=INT(X*100 J/100

and RUN, using several values for X.

HmmmmH!
Do you suppose there is any way to separate each of the digits in 3,14159, or in any other

number? Do you suppose we would have brought it up if there wasn't? After all . . . (mum-
ble, mumble . , .).

It's really your turn to do some creative thinking, but we'll get you started and see if you
can finish this idea. First, wipe out the resident program and retype the program that splits

X into an integer and fractional part (the first program in this Chapter).

We clearly can't just go on taking the INT value of X over and over to try and split down
decimal value. Let's try it with Z.

Adding .0005 gives our fraction a "push te the
: right direction". If this fraction has a digit greater

than 4 in its 10-thousasdths-plaee, then adding
.9995 will effectively increase the thousandths-
place digit by 1. Otherwise, the added .$$05 will

have no effect on the Qnal result. This results m.\\---

what's called "4/5 rounding."

This is useful when you're printing otlt dollars-and-

cerits — 1 t preven ts $39.995-type prices.

71

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


90 L = INT (Z)

100 PRINT "L =" ;L

... and RUN.

Nope — that's a sure loser. We got 0. The integer value of .141589 was that value rounded

down to the next number, and the next number down was zero. Hmmm! Erase out lines

90 and 100 and let's try again. Got any better ideas? No? Well, think some more.

•$ f (. . , brief interlude of recorded music . . .) . #»

Right! If we multiply the value of Z by 10 then Z will become a whole number plus a

decimal part: 1.41589. We can then take its integer value and strip off the decimal part,

leaving the left hand digit standing alone. Let's label the left-hand digit L and see what

happens. Enter:

90 M = Z * 10

100 L = INT (M)

1 10 PRINT "L = " ;L

... and RUN.

Now, that's more like it. It reads:

X = 3. 14159

Y = 3

Z = . 141589

L = 1

We peeled off the leftmost digit in the decimal. Can you think of any way we might use a

FOR-NEXT loop in order to strip off some more?

(, , . More recorded music . . .)

•fr

72

Time out for creative thinking!

After all, these digits might not he fust a more
accurate value of pi, but a coded message from a -\
cereal box. ifyou don 't have the decoder ring it 's

tough luck, Charlie -unten ym.haye. M-c'c^puterl}.,

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Enough thinking there on company time! Enter these lines:

95 FOR A = 1 TO 6

120 M = M - L

130 M = M * 10

140 NEXT A

... and RUN.

Voila! (I never did figure out what that meant, but I think it's positive.) The "printout"
reads:

X

Y

Z

L
L

L

L

L
L

3.14159
3

. 141589
1

4

1

5

8

9

It's all there. Every digit, including the "squirrely" ones from the land of little numbers, is

there. Analyzing the program additions (after doing a LIST)

:

Line 95 began a FOR-NEXT loop with 6 passes, one for each of the 6 digits right of the

decimal.

Line 120 creates a new decimal value of M (just a temporary storage location) by strip-

ping off the integer part. (Plugging in the values, M = 1.41589 — 1 = .41589)

Line 130 does the same as line 90 did, multiplies the new decimal times 10 so as to make
the left-hand digit an integer and vulnerable to being snatched away by the INT func-

tion. {M = .41589 * 10 = 4.1589)

Line 140 moves the control back to line 95 for another pass through the clipping program
. . . and the rest is history.

Is this too hard to follow?

No — it isn't hard to follow, and you could go through and indicate every value just like I

did and it would be perfectly clear (to coin a phrase). Let's instead learn a way to let the
Computer help us understand what it is doing.

73

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


We can insert temporary print lines anywhere in any program so we follow every step in

its execution. The Computer can actually overwhelm us with data, but by carefully indicat-

ing what we want to know, we can observe the inner details of the calculations. Start by

adding this line:

92 PRINT " #92 M = " ;M

... and RUN

The essentials of this "test" or "debugging" or "flag" line are:

1. It PRINTs something.

2. The print tells the line number, for analysis and easy location for later erasure,

3. It tells the name of the variable you are watching at that point in the program,

4. It gives the value of that variable at that point.

It is most helpful of all when inserted in FOR-NEXT loops — so

:

97 PRINT '* #97 A = " ;A

...and RUN.

Wow! The data really comes thick and fast! Hard to keep track of so much information, and

we've barely begun. This tells what is happening during each pass of the loop. Is there some
way to make it more readable? Sure. Can you think of a way?

Yes, there are lots of ways. Indenting is just one simple way to keep the answers separated

from the trouble shooting data. Retype lines 92 and 97 as follows:

" #92 M = " }M

" #97 A = " ;A

92 PRINT "

97 PRINT "

... and RUN.

Ahhh. How sweet it is. That is so easy to read, let's monitor some more points in the pro-

gram. Type in:

125 PRINT " " ," " ," #125 M = "
; M

135 PRINT *' " ," "
,
" #135 M = "

; M

... and RUN.

74

. This '^agglftg" is : such a wonderful troubleshootr
: ing tool in stubborn programs that you will warit

to make a habitof n«ver forgetting to use it when
- thegoing gsts tough.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


There it is. All the data you can handle (and then some). By using the up or down arrow key
to temporarily halt execution, you can study the data at every step to understand how the
program works (or doesn't work). Do it. Understand this program and all its little lessons

completely. When you are satisfied, go back and erase out the "flags". You have learned
quite enough for this Chapter.

EXERCISE 14-1: Enter this straightforward little program for finding the area of a circle.

(First type NEW -)

10 P = 3. 14159

20 PRINT "RADIUS", "AREA"

30 PRINT

40 FDR R=l TO 10

50 A=P*R*R
60 PRINT R,A

70 NEXT R

Area equals tt times the radius squared (that is, the radius times itself). Then RUN it to

make sure it works.

Pretty routine stuff— huh? Problem is, who needs all those little numbers to the far right of
the decimal point. Oh, you do? Well, there's one in every crowd. The rest of us can do with-

out them. Without giving any big hints, modify the resident program to suppress all the

numbers to the right of the decimal point.

EXERCISE 14-2: Now, knowing just enough to be dangerous, and in need of a shot of

humility, change line 55 so that each value of AREA is rounded (down) to be accurate to

one decimal place. For example:

RADIUS
1

AREA
3. 1

etc.

Ummm — yaas. Hang in there. It's super-simple.

75

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 14-3: Carrying the above assignment one step further, modify the program line

55 to round (down) the value of area to be accurate to 2 decimal places.

EXERCISE 14-4: At the risk of inducing complete boredom (yet teaching an unexpectedly ||

important lesson) it's all-together-now : Revise line 55 to introduce 3-place accuracy in the

AREA calculated by the resident program.

Learned in Chapter 14

Functions

INT(X)

Miscellaneous

Flags

76

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 15

It Went That-A-Way

Enter this program:

10 INPUT "TYPE A NUMBER BETWEEN 1 AND 5";N

20 IF N = 1 GOTO 110

30 IF N - 2 GOTO 130

40 IF N = 3 GOTO 150

50 IF N = 4 GOTO 170

60 IF N = 5 GOTO 190

70 PRINT " THE NUMBER YDU TYPED WAS NOT BETWEEN 1 AND 5

!

"

99 END

110 PRINT "N = 1
"

120 END

130 PRINT "N = 2 "

140 END

150 PRINT "N =3

"

160 END

1 70 PRINT "N =4 "

180 END

190 PRINT " N =5

"

DUMMY

I

m

I

|
S3

I

m

I

1

Notice anything funny about line 70? It takes up
twalines on. the Display! That's because it contains
more than 64 characters (including line number and
blank spaces) . This is perfectly all right, as you
may already have discovered in your own pro-

gramming efforts. In fact, a program line can contain
up to 72 charactere (induding line number and .',;;;

spaces), fo enter pr LIST such a long: tine takes

uptwb Display lines; but it's still just one program
Line!

77

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


RUN it a few times to feel comfortable with it and be sure it is "debugged".

Anyway, this program works fine for examining the value of a variable, N, and sending the

Computer off to a certain line number to do what it says there. If there are lots of possible

directions in which to branch, however, we will want to use a greatly improved test called

ON-GOTO which cuts out lots of lines of programming. Let's examine an ON-GOTO after

you do the following:

Erase lines 20, 30, 40, 50 and 60

Enter this new line:

20 ON N GOTO 110,130,150,170,190

. . , and RUN the program a few times, as before.

Works just the same, doesn't it?

The ON-GOTO statement is really pretty simple, though it looks hard. Line 20 says,

if the INTEGER value of N is 1 then GOTO line 110.

if the INTEGER value of N is 2 then GOTO line 130.

if the INTEGER value of N is 3 then GOTO line 150.

if the INTEGER value of N is 4 then GOTO line 170.

if the INTEGER value of N is 5 then GOTO line 190.

if the INTEGER value of N is not one of the numbers listed above, then move on to

the next line.

The ON-GOTO statement has its own built-in INT statement. It really acts like this:

20 ON INT(N) GOTO . . . ETC.

Type in the following values of N to prove the point:

1 .5

3. 99999

. 999

5 .999

6 0001

Get the picture?

78

Debugged is an old l&tSft w0ttT*hi6a, freely

translated, means "getting all the swots out ofyour
your Computer program." .

Remember, an integer is just a whole number.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Variations on a Theme

There are lots of tricks that can be played to milk the most from ONGOTO. For example,

if you want to branch out to 15 different locations but obviously cannot type that many
different numbers on an ONGOTO line, you can use several lines, like this:

20 DN N GOTO 110,130,150,170,190

25 ON N-5 GOTO 2 10,230,250,270,290

30 ON N-10 GOTO 3 10,330,350,370,390

. . . and fill in the proper responses at those line numbers.

In line 25, it was necessary to subtract 5 from the number being input as N, since each new
ON-GOTO line starts counting again from the number 1. In line 30, since we had already

provided for inputs between 1 and 10, we subtract 10 from the input N to cover the range

from 11 through 15. By using the ON-GOTO statement, we have programmed into 3 lines

what would otherwise have taken 15 lines. By packing more branching options into each

ON-GOTO line, we could have done it in 2 lines or less, depending on the number of digits

in the line numbers of the branch locations.

As in most of our examples, we could have used any letter after "ON", not just N. As we
just saw, N can be the value of a letter variable, or a complete expression, either calculated

in place (as here) or in a previous line.

Trade Secret

Due to the vagaries of rounding error and the chance the error might just round a number
like "N" a tad below the integer value expected, it is common to see something like this:

50 ON N+.2 GOTO 100,200,300 ETC.

The effect of this shifty move is to add just a "pinch" to the incoming value of N, knowing
full well that the ON-GOTO statement contains its own INT function. If N happens to have

been rounded down to say 1,98 (instead of the 2.000 expected), 0.2 will be added to it

making N 1.98 + .2 = 2.18 which the built-in INT will round down to the desired 2. Pretty

sneaky. Values between .1 and .5 are often added to the N for this purpose in well-written

programs.

|1

11

Give Me a SGN(X)

Using the ON-GOTO along with a new function called SGN (it's pronounced sign), plus a

modest amount of imagination, produces a most useful little routine. But first, let's learn

about SGN.

I

79

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


The SGN function examines any number to see whether it is negative, zero, or positive. It

tells us the number is negative by giving us a (—1). If the number is zero it gives us a (0). If

positive, we get a (+1). It's a very simple function.

First, the BAD News

Unfortunately, LEVEL I BASIC does not have the SGN function built-in.

Then, the GOOD News

Fortunately, through the use of a computer (yours) it is possible to create or simulate func-

tions we don't have. That's why Appendix A is full of good things called SUBROUTINES.

So What Is a Subroutine?

Funny you should ask. A sub-routine is a short but very specialized program (or routine)

which you build into a large program to meet a specialized need. LEVEL II BASIC stores

many of them in a special place in memory and they can be called up by a simple set of

letters. {We have several at LEVEL I, like INT.)

We don't have enough memory to spare here at LEVEL I to hold all the routines in

memory, so we are going to use a five-line subroutine instead of the "SGN" function to

accomplish the same thing. Even if you have LEVEL II BASIC in your computer, you
should complete this Chapter to be sure you learn about subroutines. We don't want to

turn out dummies, you know.

Turn to Appendix A. Find the subroutine marked SGN. "Scratch" the program now in the

computer by typing NEW, then — very carefully, so you don't make any mistakes, type in

the SGN subroutine:

30000 END

30800 REM * SGN(X) * INPUT X, OUTPUT T

30810 IF X<0 THEN T = -1

30820 IF X = THEN T =

30830 IF X >0 THEN T = -1-

1

30840 RETURN

= -1,0, OR +1

You can only get so many people in a telephone

booth. {There b supposed to be an analogy of
sorts there.)

80

"CAREFULLY"

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


"Calling" a Subroutine — (Sort of like calling hogs.)

When you want to use a subroutine, use the GOSUB##### statement.

This directs the Computer to go to that line number, execute what it says there and in the

lines following, and when done RETURN back to the line containing the GOSUB state-

ment. We will use line 20 here.

20 GOSUB 30800

A RETURN is always built into a subroutine, and you'll find it at line 30840. We have

reserved line number 30000 to hold a protective END block for all of our subroutines, so

the Computer doesn't come crashing into them when it is done with the main program.

Getting Down to Business

Okay, now let's combine GOSUB and SGN (using a subroutine) to see what all this fuss is

about. Type:

10 INPUT "TYPE ANY NUMBER" ;X

20 GOSUB 30800

30 ON T+2 GOTO 50,60,70

45 END

50 PRINT "THE NUMBER IS NEGATIVE."

55 END

60 PRINT "THE NUMBER IS ZERO."

65 END

70 PRINT "THE NUMBER IS POSITIVE."

. , . etc. (the subroutine is already typed in) . . . and RUN.

Try entering negative, zero and positive numbers to be sure it works. Most of the program

is already obvious to you, but here is an analysis:

Line 10 inputs any number.
Line 20 sends the Computer to line 30800 by a GOSUB statement. This is different from

an ordinary GOTO, since a GOSUB will return control to the originating line like a

.;;:.'."##.##.#" represents the line number, All

at o«r appendix A subroutines use line

:..y.. *
. : . \ ..'"', '".?V.^~y; !;' --y^r.'.'.-- 1 ^::'^"--* - -''•

81

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


boomerang when the Computer hits a RETURN. The GOSUB is not completed and
will not move onto the next program line until a RETURN is found.

Lines 30800 through 30840 contain this rather simple subroutine.

Line 30840 contains the RETURN which sends control back to line 20, which silently

acknowledges the return and allows movement to the next line.

Line 30 is an ordinary ON-GOTO statement, but adds 2 to the value of its variable, in this

case "T". Line 3(9 is really saying, "If T is -1 then GOTO line 50. If it is zero then

GOTO line 60, and if it is +1 GOTO line 70. By adding 2 to each of those values we
have "matched" them up with the 1, 2, and 3 which are built into the ON-GOTO.

Lines 45, 55, and 65 are routine protective blocks.

Preview of Coming Attractions?

Like so much of what we are learning, this is just the tip of the iceberg. The ON-GOTO and
SGN functions have many more clever applications, and they will evolve as we need them. As
a hint for restless minds, note that the value of X which we input was not used, but it didn't

go away. All we did was find its SGN. Hmmm . . .

Routines vs SUBroutines

We studied a special-purpose routine used as a subroutine. It is one of the few that we can

both use and really understand. All the routines, understandable or not, can be built directly

into any program instead of being set aside and "called" as subroutines. Their main value

as subroutines is that they can be "called" repeatedly from different parts of a program,

which is often desirable. As ordinary routines they are usually only used once, and lines

containing GOSUB and RETURN are not needed.

One value of using special routines as SUBroutines is that some are exceedingly complex to

type without error, and if each is typed once and saved on cassette tape, it can be quickly

and accurately loaded into the Computer as the first step in creating a new program.

Another good idea is to type all the subroutines at one time, then record on one tape. You
can later load that tape and erase out of the Computer those subroutines that are not need-

ed for the program you are creating.

Now it's your turn.

EXERCISE 15-1: Delete lines 30800-3084QI from the resident program. Build the SGN
routine into the program so it works just as well as if we were calling it as a SUBroutine.

This problem will probably take you quite a few lines — so rather than give you a lot of

blank space here, why not take advantage of the pad of Program sheets we've given you and
write your program answer there. Then check Part B for our suggested answer.

82

By the way, most subroutines are not this simple -

as a matter of fact, they get into rather hairy

mathematical derivations. We won't bother faying

to explain any of them — if you're one of those

Math nuts, you gor^htahead andp&ywith iiie

numbers. .',

Well hav& iftOie to sayin a later Chapter. Whan
you see just how powerful subroutines are, you^t

;

feel like your TRS-80 is.even smarterthanit •'.'.

thinks it is (blush, blush)?

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


ns

SGN(X)

Learned in Chapter 1

5

Statement

ON-GOTO

GOSUB

ON-GOSUB

RETURN

tneous

Debugging

Calling a subroutine

Routines

83

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

84

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 16

READing DATA

So far, we have learned how to enter numbers into our programs by two different methods.

The first is by building the value into the program

:

10 A = 5

The second is by using an INPUT statement to enter a number through the keyboard:

10 INPUT A

The third principal way is through the DATA statement.

Enter this program

:

10 DATA 1,2,3,4,5

20 READ A ,B ,C ,D ,E

30 PRINT AiBiC|D;E

. . . and RUN.

The DATA statement is in some ways similar to the first method in that a DATA line is

part of the program. It's different, however, since each DATA line can contain many num-

bers, or pieces of data, each separated by a comma. Each piece of DATA must be read by a

READ statement. Each READ statement can read a number of pieces of DATA if each

variable letter is separated by a comma.

The display shows that all 5 pieces of data in line 10, the numbers 1, 2, 3, 4 and 5 were

READ by line 20, assigned the letters A through E, and printed by line 30.

j^pih mind this important distinction: DATA lines can he read only by READ state-

ments. If more than one piece of data is placed on a DATA liney they must be Separated

by commas. Keyboard data can be entered only via INPUT statements.

DATA lines are always read from left to right by READ statements; the first DATA line

first (when there is more than one), and IT DOES NOT MATTER WHERE THEY ARE IN

85

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


THE PROGRAM. This may seem startling, but do the following and you will see:

1. Move the DATA line from line 10 to line 25 and run. No change in the printout,

right?

2. Move the DATA line from line 25 to line 10000. Same thing — no change in the

printout.

Data line(s) can be placed anywhere in the program.

This fact leads different programmers to use different styles. Some place all DATA lines at

the beginning of a program so they can be read first in a LIST and found quickly so data

may be changed.

Others place all DATA lines at a program's end where they are out of the way and there are

more line numbers available to keep adding DATA lines as the need arises. Still others

scatter the DATA lines throughout the program next to the READ lines which bring that

data into use. The style you use is of little consequence — but consistency is comfortable.

The Plot Thickens

Since you now know all about FOR-NEXT loops, let us see what happens when a DATA
line is placed in the middle of a loop. Erase the old program with NEW and type in this

program

:

10 DATA 1,2,3,4,5

20 FDR N = 1 TO 5

30 READ A

40 PRINT As

50 NEXT N

. . . then RUN .

That DATA line started outside the loop. Now move it to line 25 and RUN. What hap-

pened?

Nothing different! It is important to note this fact or we wouldn't have gone to the trouble

to do it. Note that as we went through the N loop 5 times, we read the letter A, and the

PRINT statement only printed A, but A's value was different each time. Its value was the

same as the value it last READ in the DATA line. The reason — each piece of data in a

DATA line can only be read once each time the program is run. The next time a READ
statement requests a piece of data, it will read the next piece of data in the DATA line, or,

if that line is all used up, go on to the next DATA line and start reading it,

86

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Change line 20 in the program to read:

20 FOR N = 1 TO 6

. . . and RUN .

We, of course, told the READ statement to read a total of 6 pieces of DATA but there were

only 5. An error statement caught us, as the screen shows,

12 3 4 5 HOW?

30 READ A?

Now change line 2(3 so the number of READs is less than the DATA available

20 FOR N = 1 TO 4

. . . and RUN.

The program ran just fine as long as we didn't use all the available data. The point is, each

piece of data in a DATA statement can only be read once during each RUN.

Exceptions, Exceptions!

Because it is sometimes necessary to read the same DATA more than once without having

to RUN the complete program over, a statement called RESTORE is available. Whenever the

program comes across a RESTORE, all DATA lines are restored to their original "unread"

condition, both those that have been read and those that have not, and all are available for

reading again, starting with the first piece in the first DATA line. Change line 20 of the pro-

gram back to

20 FOR N = 1 TO 5

and insert

35 RESTORE

and RUN.

Oh-oh! The screen prints five l's instead of 1 2 3 4 5. Can you figure out why?

"ONE MORE TIMET'

87

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Line 30 READ A as 1, but line 35 immediately RESTOREd the DATA LINE TO ITS

ORIGINAL UNREAD CONDITION. When the FOR-NEXT loop brought the READ line

around for the next pass it again read the first piece of data, which was that same 1. Same
thing with all successive passes.

READ and DATA statements are extremely common. The RESTORE statement is used

less often.

String Variables

Who knows where some of these seemingly unrelated words come from? If they weren't so

important we could ignore them. We have been using the letters A through Z to indicate

numbers. They are called NUMERIC VARIABLES. In LEVEL I BASIC we have set aside

2 additional symbols to indicate STRING VARIABLES. They are A$, and B$, pronounced

"A String" and "B String". String variables can be assigned to indicate Letters, Words

and/or Combinations of letters, numbers and spaces of up to 16 characters. Type NEW
,

then type in:

10 INPUT "WHAT IS YDUR NAME";AS

20 PRINT "HELLO THERE, ";A$

. . . and RUN.

Hey-hey! How's that for a grabber? If that, along with what you have learned in earlier

chapters doesn't make the creative juices flow, nothing will.

That's Two

Two ways we now know to print words. The first, learned long ago, is to imbed words in

PRINT statements (and is called "printing a string"). The second is to bring in a word(s)

through an INPUT statement (called "inputting a string"). If you can't think of the third

way, go back and check the title heading at the first of this chapter.

Ah yes, brilliant student! Ahem . . . (Reading a string.)

Change the program to read

:

10 READ A$

20 DATA RADIO SHACK TRS-80

30 PRINT "SEE MY FOXY"(A$

88

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


... and RUN.

See! I told you a string variable would only hold 16 characters. Count them. Any sug-
gestions??

1

But of course. Level I BASIC has two string variables available. Let's rework the program to
print the entire name of the computer.

10 READ A$

15 READ B$

20 DATA RADIO SHACK, TRS-80

30 PRINT "SEE MY FOXY"; A$; " " ;B$

That's more like it. Analyzing the program.

Line 20 contains two Data items, separated by a comma.
Line 10 READs the first one.

Line 15 READs the second one.

Line 30 contains 4 print expressions. The first one prints SEE MY FOXY, leaving a space
behind the "Y" since string variables always run letters together, allowing you the
option of inserting your own space. The second print is A$, RADIO SHACK. The
third print is the space enclosed in quotes. The last print is TRS-80.

EXERCISE 16-1
: Okay, now it's your turn. Design a program to produce exactly the same

results, but using only AS, not B$.

A lot of your learning to date is tied up in this little program, so be sure you completely
understand it before you move on.

teethe* w<stf^ ;*sfenth!BiG» between string

;
Variables does NOT cause a space to fee PRINTed
between them; So you have to insert a space

;':«anf,";''ipaiM,,. ...... -i.

Stuck? Hint: Try a FOR-NEXT loop.

89

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


A Voice from the Past

Remember how in a very early chapter we checked the contents of each Numeric Variable

address, A through Z, by using the calculator mode?

PRINT AjBtCjDjE; etc.

We can do the same thing with our two new Strings. Type:

PRINT A$jB$

Why does it display

TRS-80TRS—80 ?

The first TRS-80 is simple — it was the last string read by A$. Same thing with B$. Even

though B$ was not used in solving the last problem, it was used in the earlier example, and

if the Computer was not turned off since then, it was held in memory. This fact is more

than a laboratory curiosity. It can get you into "unexplainable" programming problems if

you're not aware of it.

Oh, by the way . .

.

There isn't room in LEVEL I BASIC to do everything, obviously, and we promised earlier

that you would learn how to answer "YES" and "NO" to the Computer. LEVEL II allows

you to do it in a straight-forward manner. Here in LEVEL I we have to be sneakier. Enter

this program:

10 Y = 1

20 N =

30 INPUT "ARE YOU OLD ENOUGH TO VOTE (Y/N)"jA

40 IF A = 1 THEN 60

50 PRINT "DON'T FRET. THE TIME WILL PASS FAST ENOUGH."

59 END

60 PRINT "SWELL. DON'T FORGET TO REGISTER!"

. . . and RUN.

90

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Analysis

:

Line 10 sets the value of Y equal to 1.

Line 20 sets the value of N equal to 0. These two values can be quickly and easily check-

ed by typing PR I NT Y , N in the calculator mode.
Line 30 inputs the answer to the question as either Y or N, (it will also accept YES or

NO and any other words starting with Y and N). "A" takes on the value of Y or N as

defined in lines 10 and 20,

Line 40 tests the value of A, and if it is 1 , sends control to line 60. If it is not 1 (but not
necessarily 0), the line 40 test defaults and falls through to line 50. The appropriate

message is printed.

Line 59 is a protective END so if line 50 _is printed, line 60 will not also be printed.

More Analysis:

We have carefully given Y and N values of 1 and 0. This does not mean that other letters

might not have those same values. That does not matter as long as only Y and N are hit.

The present program relies on line 40 defaulting to the next line if a 1 is NOT found. As
a partial precaution against a user hitting the wrong letter accidentally and coming up with
the wrong answer, we can "backstop" our program with these additional lines:

45 IF A = THEN 50

47 PRINT "PLEASE ANSWER WITH EITHER A Y OR N!"

49 END

Analysis

:

Line 45 insists that to get the response to line 50, zero must be entered. We know that

an N will do that for sure. Other letters might also have the value of zero.

Line 47 gives the "default" answer, cautioning the operator that he gave other than a

YES or NO.
Line 49 protects against printing the default answer and running into the line 50 answer.

EXERCISE 16-2: Design and write a simple program that asks the user at least 5 questions,

and in the process carries on a little conversation with him.

I

You're on your own with this one.

Try a PRINT A^CjrjjE^GsletcJ routine to s#e .

IE*»jf- crtfeer letter variable is storing £ vafufc ot i or 0.

91

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


•Learned in Chapter 16

Statements

READ

DATA

RESTORE

Miscellaneous
;

!:**«; :;-;™;>i;--V:^;>;lK;;-i- :.V; :

;' '-I':":

String Variables A$, B$

Numeric Variables

(Y/N) - Teaching

TRS-80 to respond to

YES or NO

92

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 17

Coming Up for Air

We've had a number of heavy chapters, and more are coming. Exciting as all this is, we need
a break. How about a super-short (but important) chapter? Tho't you'd agree.

Absolute Value

The ABSOLUTE VALUE of any number is that number without any plus or minus, sign.

Just the number. Easy enough?

Type:

10 INPUT "TYPE ANY POSITIVE OR NEGATIVE NUMBER" ;X

20 Y = ABS(X)

30 PRINT "X", "Y"

40 PRINT X,Y

. . . and RUN , inputting different number values, both positive and negative.

Regardless of what number you input (as X), its absolute value "Y" is that same number
without the sign. That's "sign" like in SGN from an earlier chapter.

When you're done playing with this one and understand it, the chapter is over.

Learned in Chapter 1

7

Function

ABS(X) = absolute value of X

Here's a more technical definition: ^
If X is less than 0, then ABS(X>- -i*x
If X « % then ABSKX) - X -
KXlJgreate;f.:than:#, then ABS(XJ- X

Toldym imU.4,:?h0W mn't It

;;:;•:;;;:£

93

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

94

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 18

Now He Tells Me!

This may blow your mind even though you have suspected it all along. The Radio Shack
LEVEL I BASIC interpreter has a "shorthand." It is not some wild variation of the

language, or a "regional dialect", but a genuine shorthand. We have deliberately not used it

until you were well into the language so you would learn how to communicate with all

those other folks out there who don't have this shorthand provision.

Hang Onto Your Chair

Nearly every COMMAND, STATEMENT and FUNCTION has a shorthand notation which is

much shorter and easier to type, and does exactly the same thing. The complete list is inside

the back cover. Here is a list covering those you have learned to date

:

NEW = N.

LIST = L.

RUN = R.

PRINT = P.

MEM =M.

STOP = ST.

CONT = C.

THEN = T.

END = E.

ABS = A.

RESTORE = REST.

GOTO = G.

INPUT = IN.

FOR = F.

NEXT = N.

CSAVE = CS.

CLOAD = CL.

STEP = S. (when used

with FOR/NEXT)

TAB = T. (When used

with PRINT)

INT=I.

DATA = D.

READ = REA.

^S^/

*N-C-ST-GO OH, GO ON-"

Remember our power-up test back m Chapter I?

How you cat* figure out what the test testa.

P.M. lei's see, that's .', .?

95

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


There's More?

In addition, your Radio Shack Interpreter allows you to put more than one statement on

each numbered line, separating them by a colon (:). For example, a timer loop such as:

100 FOR N = 1 TO 500

X10 NEXT N

becomes . . .

100 FOR N = 1 TO 500:NEXT N

. . . shorter still . . .

100 F.N =1TO500 :N.N

... or even less space . . .

100F.N =1TO500:N.N

The last listing can be entered into the Computer as shown, with no space between the line

number and the first letter, but the Computer will automatically insert a space. Entering it

this way does conserve the one extra space that you have been inserting to this time,

however.

Caveat Emptor (Don't buy a used chariot from a stranger.)

Control yourself! It's easy to get carried away. While we will be using both Radio Shack

Shorthand and multiple statement lines often from here on, you will quickly see that it's

possible to pack the information so tightly that it becomes hard to read, and also very hard

to modify. For most of this Manual we will avoid multiple statement lines, but when we

want to really pack it tight — this is the only way to go!

More Caveat (or is it more Emptor?)

Radio Shack Level I Shorthand is nearly foolproof. (Knowing some of our customers, we

can't give an unconditional guarantee; or, to broaden our coverage, let's say we know

ourselves well enough, too!), but multiple statement lines require careful understanding.

Especially critical are statements of the IF-THEN variety.

Enter the following program:

96

.-: Tfet: snathe* sp^easaver involves the IF-THEN
stat^meitfc The use *rf THEN is stomal. That Is,

instead of ''::'' '({':-•'. \''.-0"'-. :
r:---'-

:

.'..-.

-. IF (condition)THEN (statement)

it's perfectly okay to. write

IF (condition) (statement)

; An example of.this would be; ,
S-

10 IF A-2© stof;

Note thatyon cant sav

IF (condition) (line number).

Yost have to add eitaerTHEN orSOT©:

IF (condition) G. (line-number)

IF {condition) T, (line- number)

1

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


10 IN. "TYPE IN A NUMBER";X

20 IF X = 3 THEN 50 s G.70

30 P. "HOW DID YOU GET HERE?"

40 END

50 P. "X =3"

60 END

70 P. "CAN'T GET FROM THERE TO HERE."

. . . and RUN it a number of times with different input values.

Line 20 is illegal. If the test in the first statement in the line passes, control branches off to
line 50. That's OK. If the test fails, however, control drops to the next line in the program —
line 30. There is no way the second statement in line 20 (G.70) can ever be executed.

THE MESSAGE - if you put an IF-THEN (or ON-GOTO) type-test in a multiple statement
line, it must be the last statement in that line. Other invalid procedures will be called to
your attention as they are studied in future chapters.

NEXT MESSAGE — you cannot send control to any point in a multiple statement line
except to its first statement. Look at Line 20 in the resident program. Even if the G.70
was legal in that line, there is no way to address it. It shares the same line number as the first

statement in the same line. Only the first statement is addressable by a GOTO or IF-THEN.

NEXT MESSAGE — DATA lines cannot exist on lines with other statements.

EXERCISE 18-1: Rewrite any one of the programs found in Part C, using every Radio
Shack Shorthand feature possible, and multiple statement lines. Use the P.M. (PRINT
MEMORY) test to see how much memory is being used. Rework the program to cut it to
the smallest memory figure possible.

97

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Learned in Chapter 1

8

**.' i-
'

Statements

IF (condition) (statement)

with THEN omitted

MisC0&iM«*ps

LEVEL I shorthand

dialect

Multiple statement lines

98

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 19

A RANDOM number is one with a value that is unpredictable. A Random Number Genera-
tor pulls random numbers out of a hat. We have a Random Number Generator and you set
it up this way:

N = RNDtX)

Where N is the random number
RND is the abbreviation and symbol for random
X is a control number which can be either typed between the parentheses or brought in

as a variable from elsewhere in the program.

Type:

50 PRINT RND(0)

. . .and RUN.

RUN it again — at least 10 times.

Did you observe:

1. A different number appeared each time?
2. All numbers were between and 1?
3. Very small numbers were expressed in exponential notation. RUN some more until

you are satisfied that these statements are true.

Wait a minute — all this RUNning is dumb. You have a Computer! "Build" a FOR-NEXT
loop around this Random Number Generator and let it run itself 10 times.

i vr-\

"RUNNING IS m-
or ts nr*

What program did you write? I wrote:

40 FOR N = 1 TO 10

50 PRINT RND (0)

60 NEXT N

99

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


RUN it a few times to get the idea.

Let's put a semi-colon behind our PRINT statement so we can get more numbers on the

screen at one time, and increase our FOR-NEXT loop to 90 passes. Change your program

accordingly

:

40 FDR N = 1 TD 90

50 PRINT RND(0)

j

60 NEXT N

. . . and RUN.

You get the idea.

Are yoi* using B, now instead of RUN? Sure is

easier; isn't it?

This is fairly exciting!

Well, maybe so, hut you ain 't seen nothing yet! Virtually all computer games are based on

the RND(X) function, and you'll soon be playing some and designing your own.

RND(X) with racing stripes.

The RND(0) we just experimented with is the traditional Random Number Generator. In

other BASIC dialects you may see it written as just plain RND. With a little mathematical

chicanery and use of the INT function it is possible to turn those numbers between and 1

into something useful. Rather than study that technique, however, let's look at the Radio

Shack upgrade which does it all so much easier. Change line 50 to read

:

50 PRINT RND( 15 )

;

. . . and RUN .

Wow! That's more like it — real live random integers. And they all are values that fall

between 1 and 15. Figured it out already? Pretty simple, isn't it?

1. If the number in parentheses (or its INT value) is 0, the numbers generated are between

Q and 1

.

2. If the number in parentheses is 1 or larger, the numbers generated are from 1 to

the INT value of that number (inclusive).

3. In LEVEL I BASIC, the largest permissible value of X is 32767.

Skeptical? You don't believe the numbers are really random? You want proof? A
natural reaction. OK — how about pretending to repeatedly flip a coin and see how
many heads come up compared to the number of tails?

100

..'-'~-< -v."- 1-- 1--

W^re |ust trying: to tell you that "ours" is better,

than "theirs". With Radio Shack's Random Number
Generator we <^a come up with all th* numbers
without all that fancy footwork.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


The Old Coin Toss Gambit.

Remember now, you could toss a thousand heads in a row and the odds on the next toss

are exactly 50/50 that a head will come up again. Every toss is totally independent of what
happened before it, IT IS TOO!!!!! In the long run however, the number of heads and tails

should be exactly the same. {Casinos live off people who go broke waiting for their particu-

lar scheme to pay off . . . "in the long run"). Your Computer will give you a complete edu-

cation in "odds" and various games of chance, and allow you to prove or disprove many
ideas involving probability. This is known as computer "modeling" or "simulation."

We're going to write this coin toss simulation program in Radio Shack Shorthand and use

multiple statement lines just for the practice. Type it in very carefully to avoid errors:

10 H=0tT=0:P.

20 IN. "HOW MANY TIMES SHALL WE FLIP THE COIN";F:CLS

30 P. "YOU STAND BY WHILE I DO THE FLIPPING ------

40 F.N=1T0F:X=RND(2 ) jONXG. 60,70

50 P. "IT BOMBED! WAS NEITHER A 1 NOR A 2 .
"

\ END

60 H=H+1 sG. 80

70 T=T+1

80 N,N jP. :P . sP . iP.

90 P. "HEADS TAILS TOTAL FLIPS' P. tP.H.T.F

100 P. 100*H/F; " % "
, 100*T/F

s

:P. :P,

. . . and RUN. "Flip the coin" 100 times on the first RUN to get a feel for the program and

the run time. RUN as many times as it takes to convince you that the random number
generator produces really random numbers. When it's time for lunch or you can wait quite

awhile for the answer, try 25,000 flips or more.

Program analysis:

Line 10 contains 3 statements. The first initializes H (for Heads) at zero. The second sets

T (for Tails) equal to zero. The third inserts a space in the printout with a PRINT(P.).
Line 20 has 2 statements. 1 — Inputs the number of flips desired. 2 — A clear screen

(CLS) to start the next print line at the top of the screen.

Line 30 Prints a "Standby" statement.

Line 40 has 3 statements. 1 — Begins a FOR-NEXT loop that runs "F" times. 2 — Is

"VOU IOSH"

101

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


the RND(X) generator. We have told it to generate integers between 1 and 2, and of

course that restricts it to just the numbers 1 and 2. Heads is "1" and Tails is "2".

3 — An ON-GOTO test sends X=l to line 60 where the "Heads" are counted, and X=2

to line 70 where the "tails" are counted. Note that this test is the last statement in the

multiple statement line.

Line 50 is a default line. If X = other than 1 or 2, the error message will be printed and

execution will END. It will never happen, but you are insisting on proof.

Line 60 sets up H as a counter. H was initialized as zero in line 10, and each time the

ON-GOTO test sends control to this line because X=l, H is incremented by one and

keeps count of the "Heads". The second statement sends control to line 80 where only

the first statement, NEXT N, (N.N), is executed. When the N Loop has gone through

all "F" number of passes, control in line 80 will move to the 4 blank PRINT(P.)

statements. Until then, the N.N. sends it back to line 40.

Line 40 generates another random number (1 or 2). If the next X=2 the ON-GOTO sends

control to line 70.

Line 79 keeps track of the tails, then passes to Line 80 and the NEXT N. When the last

"N" is "used up", it inserts 4 blank print lines and falls to . . .

Line 90 where the Headings are printed, then the blank line, then the values of H,T

andF.
Line 100 calculates and prints the percentage of heads, and percentage of tails, and then

prints 3 blank lines at the end to make the display look less cluttered.

More Than One Generator at a Time

It is possible to generate more than one random number by using more than one generator

in a program. This has special value when the ranges of the generators are different, but is

helpful even if their ranges are the same.

To make the point, we are going to get you started creating a computer game of "Craps" —

where 2 dice are "rolled". Each "die" has six sides, each side having 1, 2, 3, 4, 5 or 6 dots,

respectively. When the 2 dice are rolled, the number of dots showing on their top sides are

added. That sum is important to the game. Obviously, the lowest number that can be rolled

is 2, and the highest number is 12. We will set up a separate Random Number Generator

for each die, give each a range from 1 to 6, and call them die "A" and die "B".

Type NEW , then the following:

5 A=RND(6) :B=RND(6) :N=A+B

60 P.N

. . . RUN a few times to get the idea.

102

It eart a&obo dofie with a singe'gnMt&fe but ,,.

that wouldn't mafee our point .v. would it*

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


As you can see, each number printed falls between 2 and 12. We are able to put both of our

generators and the adder on the same line since the dice are always both thrown at the same

time, and only the total is of interest here.

Why would the following be wrong?

50 P.RNDt 1 1 ) + 1

Answer: Adding random numbers created by two generators, each picking numbers between

1 and 6 will create many more sums which equal 3, 4, 5, 6, 7, 8, 9, 10 and 11 than a single

generator which picks an equal amount of numbers 1 through 11 (to which we add 1, to

make the range 2 through 12).

Rules of the Game

In its simplest form, the game goes like this:

1, The player rolls the two dice. If he rolls a sum of 2 (called "snake eyes"), a 3 (called

"cock-eyes") or a 12 (called "boxcars") on the first roll, he loses and the game is over.

That's "craps".

2, If the player rolls 7 or 11 on the first throw, (called "a natural"), he wins and the game

is over.

3, If any other number is rolled, it becomes the player's "point". He must keep rolling

until he either "makes his point" by getting the same number again to win, or rolls a

7, and loses.

EXERCISE 19-1 : You already know far more than enough to complete this program. Do it.

Put in all the tests, print lines, etc. to meet the rules of the game and tell the player what is

going on. It will take you awhile to finish, but give it your best before you turn over to

Part C (User's Programs) under Craps for a sample solution. Good luck!

imp1*:->;. gams
Use some of your blank Program Sheets for writing up this program.

103

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Random numbers are unpredictable; properly functioning computers are not. So how do we

get random numbers out of our Computer? We don't: we get pseudo-random numbers. Each

time you use the RND function, the Computer uses an internal "seed number" to produce

the desired random number.

This is neither the time nor the place to get technical, so we'll give the following tip without

further explanation

:

When you're running game programs using RND, it's a good idea to set the seed to an un-

predictable value. This will ensure that you don't get the same pseudo-random number

sequence each time you turn on the Computer and play the game. Put the following lines at

the beginning of your program where they will be executed only once:

1 IN. "ENTER A NUMBER BETWEEN 1 AND 100" ;N

2 F. 1=1 TO N J=RND( 32767

)

N. I

functions

- Learned in Chapter 19

. Miscellaneous -

RND(0) for random numbers
greater than and

less than 1

Random vs. Pseudo-

random
Seed numbers

RND(N) for random numbers
from 1 to N

104

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 20

And It Draws Pictures Too!

Your TRS-80 can draw an endless variety of pictures on the Video Display screen. You will

learn some of the basic procedures and capabilities in this Chapter. Later on there's even

more pictures! After that, what you create is limited only by your own imagination. Who
knows . . . you may write a graphics program artistically equivalent to the Mona Lisa.

Now, on to 2 of the 4 graphic commands:

SET turns on (or lights up if you will) a particular section, block or "light" on the screen,

RESET turns off (or blackens) a particular "light".

For graphics, the screen is divided into a large number • of sections. See the Video

Display Worksheet on the next page. Each "light" is a rectangular block 2 dots wide by 8

dots high; and each has its own "address".

For example

:

SET (55,32)

means — "turn on the light" at the junction of 55th "X" Street and 32nd "Y" Avenue.

X is the horizontal address counting across from the left-hand side of the screen. Y is the

vertical address, counting down from the top of the screen. So everything starts from the

upper left-hand corner.

Type in

50 SET ( 55 , 32 )

Clear the screen and RUN .

There it is! The light came on. Check the Video Display Worksheet carefully to find the

address of that light. Did it show up in about the right place??

ARTIST

105

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


TRS-80 Video Display Worksheet
TITLE PROGRAMMER COMMENTS PAGE OF

TAB-"- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
PRINT
AT X—
t 1 2 3 4 5 6 7 8 9

1 1
1

1

2
1
3

1

4
1
5

1

6
1
7

1

8
1
9
2 2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3 3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4 4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5 5
1
5
2
5
3
5
4
5
5
5
6
5
7
5
8
5
9
6 6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
7 7
1
7
2
7
3
7
4
7
5
7
6
7
7
7
8
7
9
8 8
1
8
2
8
3
8
4
8
5
8
6
8
7
8
8
8
9
9 9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9

1 1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

1

1
1
1

1

1

2

1
1
3

1

1

4

1
1
5

1

1

6

1
1
7

1

1

8

1
1
9

1

2
1
2
1

1

2
2

1
2
3

1

2
4

1
2
5

1

2
6

1
2
7

631 1

2 2

64
3 3

1274 4

5 5

128
6 6

1917 7

8 8

192
9 9

25510 10

11 11

256
12 12

31913 13

14 14

320
15 15

38316 16

17 17

384
18 18

44719 19

20 20

448
21 21

51122 22

23 23

512
24 24

57525 25

26 26

576
27 27

63928 28

29 29

640
30 30

70331 31

32 32

704
33 33

76734 34

35 35

768
36 36

83137 37

38 38

832
39 39

89540 40

41 41

896
42 42

95943 43

44 44

960
45 45

102346 46

47 47

Y
1 2 3 4 5 6 7 8 9 1 1

1
1

2
1
3

1

4
1
5

1

6
1
7

1

8
1
9
2 2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3 3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4 4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5 5
1
5
2
5
3
5
4
5
5
5
6
5
7
5
8
5
9
6 6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
7 7
1
7
2
7
3
7
4
7
5
7
6
7
7
7
8
7
9
8 8
1
8
2
8
3
8
4
8
5
8
6
8
7
8
8
8
9
9 9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9

1 1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

1

1
1
1

1

1

2

1
1
3

1

1

4

1
1
5

1

1

6

1
1
7

1

1

8

1
1
9

1

2
1
2
1

1

2
2

1
2
3

1

2
4

1
2
5

1

2
6

1
2
7

106 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Careful now, don't mess up the screen. Type

50 RESET (55,32)

and RUN.

How about that. You found the ON-OFF switch!

Want to really press your luck? Try turning the light back on. That's right, type

50 SET (55, 32)

and RUN 5 times in a row. Then 50 RESET ( 55, 32) and RUN.

Oh well, can't win 'em all. Why didn't it work? It has to work. It did work! Then why didn't

the fool light go OFF? Answer: The carriage return keeps moving it up away from its origi-

nal address, and only what's at a specific address gets turned ON and OFF. The screen

addresses never move.

The point of all this obviously is that we can control whether each block on the screen is

white or dark (on or off) by "talking" to it at its individual address with SET and RESET
statements.

Blinking Lights in the Sky - Flying Saucers or Lightning Bugs?

If one has an ON-OFF switch, what does one do with it? Is that what's called a rhetorical

question? With a little imagination one could create blocks that don't just go ON and OFF,
but do so to attract attention . . . by blinking. This simple program illustrates how to set up

a "blinker".

10 CLS

20 X = 60

30 Y = 25

40 SET(X.Y)

50 RESET(X.Y)

60 GOTO 40

Back For More . . .

In the horizontal direction, there are 128 light-block addresses, numbered from to 127.

is at the far left, 64 is near the middle and 127 is at the far right.

107

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


In the vertical direction, there are 48 light-block addresses numbered from to 47. is at

the top and 47 is at the bottom.

The statement "SET (X,Y)" whitens the block which is the Xth block from the left in the

horizontal direction and the Yth one down from the top in the vertical direction. And,

you've figured out that RESET works the same way except that it "turns the light off".

Let's try it out. This program will lighten any one block of your choosing. Type:

10 INPUT "HORIZONTAL ADDRESS (0 TO 127) IS";X

20 INPUT "VERTICAL ADDRESS (0 TO 47) IS" (Y

30 CLS

40 SET (X, Y)

and RUN many times using various values of X and Y.

What happens if X = 150? Try it. How about if Y = 60? Try it, too. The block just moves off

the end (or bottom) of the screen and starts over with the address count. We call this "wrap

around".

You may have noticed that if a block is lit in the upper left-hand corner, the READY and

the prompt (>) destroy it. Try X = 6 and Y = 6. Then X = 5 and Y = 5. We can avoid this

problem by not returning control to the prompt — by adding

99 GOTO 99

at the end of the program. After running the program, this line locks the Computer in an

endless loop. To break the loop, press | BREAK] key. You should put an endless loop at the

end of every graphics program. Do it here, then try X = 5 and Y = 5. Now try X = and

Y = 0. Remember the |BREAK| key to stop a properly "locked out" graphics program,

before starting another.

While we have a key that RESETs every block on the screen to "OFF" in one operation

(the JCLEAR
J

key), we don't have a similar key to turn them all "ON".

However, we can easily write a program that "lights", "whitens" or "paints" the entire

screen. It uses one Clear (not really a must, but always a good habit to use one for graphics

programs), two FOR-NEXT loops and one endless "locking loop". Type this:

10 CLS

108

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


20 FOR X = TO 127

30 FOR Y = TO 47

40 SET (X, Y)

50 NEXT Y

60 NEXT X

99 GOTO 99

and RUN.

The resident program fills the screen from left to right. Redesign it so it starts at the top and
fills to the bottom.

Answer:

10 CLS

20 FOR Y = TO 47

30 FOR X = TO 127

40 SET (X, Y)

50 NEXT X

60 NEXT Y

99 GOTO 99

Next, rewrite it so it starts painting at the bottom and fills to the top.

NOffi; Wftgn rufthmg graphfes*youll profcabiy ..
-

want to turn up both the Contrast and Brighten«5S

slightly/; ,'. ';
,4i;.-";

Don't forget . . . 6r^ycrahgvetoUseth« J8R:EAK
fcey to stop the endless loop.

109

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Answer:

10 CLS

20 FOR Y = 47 TO STEP-1

30 FOR X = TO 127

40 SET (X, Y)

50 NEXT X

60 NEXT Y

99 GOTO 99

OK, now rewrite it so it starts painting at the right-hand side and fills to the left-hand side.

Answer:

10 CLS

20 FOR X = 127 TO STEP-1

30 FOR Y = TO 47

40 SET tX, Y)

50 NEXT Y

60 NEXT X

99 GOTO 99

Fantastic — now you can paint the old barn at least 4 ways!

EXERCISE 20-1 : Write a program which will allow painting only a small part of the screen

(you determine which part). Allow keyboard INPUT of the starting and ending block num-

bers in both the horizontal and vertical directions.

DWat know1ym could STEP it MCfcw&rds^ehT

Try- a few of those and see how it works. Try
; different increments (-2, ~S, etc,),

'^:0.^ '-
.'.^

Try same other step increments too,

110

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Getting the hang of it?? Great. Enough playing with blocks . . . let's draw some lines (really

moving on, eh?!). Erase the resident program.

We'll start with a straight line. This program gives us a straight horizontal line across the

entire screen. Type:

10 INPUT " VERTICAL ADDRESS (0 TD 47)" ;Y

20 CLS

30 FDR X = TD 127

40 SET (X,Y)

50 NEXT X

99 GOTO 99

andRUNseveral times.

We can just as easily create a straight vertical line. Try this.

10 INPUT ''HORIZONTAL ADDRESS (0 TO 127) "
S X

20 CLS

30 FOR Y = TO 47

40 SET (X, Y)

50 NEXT Y

99 GOTO 99

And RUN this a number of times.

Now, let's see if you can modify this last program so we can INPUT both the starting verti-

cal address and the length (in blocks) of the line.

Of course you haven't forgotten how to <iojBi$fc:;
:

have yoa!.^ypeBBA§E..' T -.» m, no^no! ;T£pe
;

^- ;

;:

MEW or just N . (Don't fotgiffc tfcfe period wfeeltt.'-

yap use abbreviations,)

111

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


12 IN. "THE STARTING VERTICAL ADDRESS * ( TO 47) IS"|V

14 IN. "HDWMANY VERTICAL BLOCKS DO YOU WISH TO FILL"; A

16 IF V+K48 GOTO 20

18 PRINT "TOO MANY VERTICAL BLOCKS. WOULD WRAP-AROUND!"

19 END

30 FOR Y = V TO V+A

Now that we can draw straight lines, we can form figures — like squares and rectangles. This

program forms a rectangle. After NEW , type:

10 INPUT "HORIZONTAL STARTING POINT (0 TO 127) "jX

20 INPUT "VERTICAL STARTING POINT (0 TO 47) ";Y

30 INPUT "LENGTH OF EACH SIDE (IN BLOCKS) — TO 47) ";K

40 CLS

50 FOR L = X TO X+K

60 SET (L,Y)

70 SET (L.Y+K)

80 NEXT L

90 FOR M = Y TO Y+K

100 SET £X,H)

1 10 SET ( X+K,M)

120 NEXT M

999 GOTO 999

and RUN .

Since our building blocks are not square, but 2 by 8 rectangles, we always get a rectangle.

How can we change the program to always form a square?

112

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 20-2: Modify the resident program so it always draws a square (on the inside).

Press on . . .

A Little Diversion (Is there no end to all the tricks we can do?!)

All our graphics work to this time has been done by drawing white lines on a darkened

screen. We can do just the reverse by painting the screen white first, then darkening the

desired areas with RESET . This program for example, draws a black horizontal line on a

white background. Type:

10 IN . "VERTICAL POSITION < TO 47) "
; Y

20 CLS

30 FOR X = TO 127

40 FOR J = TO 47

50 SET(X.J)

60 NEXT J

70 NEXT X

80 FOR X = TO 127

90 RESET(X,Y)

100 NEXT X

999 G.999

and RUN .

If you're interested, go back and try similar easy modifications to other demonstration pro-

grams and have some fun with these reverse (or "negative") displays

We can draw other straight (more or less) lines by just changing both X and Y addresses of

SET in the FOR-NEXT loop. Try this next program to draw a diagonal line.

10 INPUT "HORIZONTAL STARTING POINT (0 TO 127) ";X

20 INPUT "VERTICAL STARTING POINT (0 TO 47)";Y

Whew! That's riotrealiy very easy, but with some
careful study (remembering that we have to

account for the width of the blocks) it falls iota

jme. Try youi own approach a few times before

going back to Part B to look at our suggestion., ':
Dont cheat now!

You may want to come back later for some
neavier:study.

113

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


30 INPUT "DIAGONAL LENGTH" ;K

40 CLS

50 FOR L = TO K

60 SET CX+L.Y+L)

70 NEXT L

99 GOTO 99

Once we have the diagonal line, we can form a right triangle by adding:

70 SET(X,Y+L)

80 SET<X+L,Y+K>

9 NEXT L

or

70 SET(X+K , Y+L)

80 SET(X+L,Y)

90 NEXT L

Try them both. What is the difference in the displays?

Answer: They are inverted, mirror-images of each other.

Broken Lines

In every graphics program we have used, we could have made the lines "broken" by intro-

ducing a STEP other than "1" in the FOR-NEXT loops. For example, we can get a broken

horizontal line with:

114

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


10 INPUT "VERTICAL ADDRESS C0 TO 47) "jY

20 INPUT "STEP SIZE" ;S

30 CLS

40 FOR X = TO 127 STEP S

50 SET (X,Y)

60 NEXT X

99 GOTO 99

RUN this program with various values of S. Note that as you increase S, the line is drawn
much faster (since the Computer has less work to do). In fact, for S=10 or more, you can

hardly see the line being drawn. This is how a TV picture is created — since it too is drawn

one unit at a time (but so fast you don't notice the "drawing time").

Change the program as follows

:

55 RESET (X.Y-1 )

70 Y = Y+l

80 GOTO 40

If S is small, you can see the lines being formed and cleared. But if S is fairly large (try 10),

the line seems to move in somewhat "old-time movie" fashion. This is the way the illusion

of motion is created on a TV set and in some of the popular video games.

Now try this next program (clear out the old one). It paints a dot on the screen and moves it

up and down.

10 INPUT "HORIZONTAL STARTING POINT (0 TO 127)";X

20 INPUT "VERTICAL STARTING POINT (0 TO 47) ";Y

30 CLS

40 RESET (X.Y-1

1

50 SET (X,Y)

H

115

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


60 Y=Y+1

70 GOTO 40

99 GOTO 99

The RESET command simply follows along behind and erases the dot from the last SET.

What happens if you omit RESET? When you try this, remember to change line 70 to

GOTO 50.

Details . . . Details

One minor problem . . . RESET and SET don't work with negative coordinates. Take a

look at line 40 —

40 RESET (X , Y-l )

— if you INPUT Y equal to 0, then the Y address really becomes Y—1 , , .
—1. A no-no!

We can get around this pesky little detail by changing line 40 to:

40 RESET (X , Y + 47

)

Why does this work?

Back to the Good Stuff

We can just as easily move a point to the right with

:

10 INPUT "HORIZONTAL STARTING POINT (90 TO 127)" (X

20 INPUT "VERTICAL STARTING POINT (0 TO 47) "jY

30 CLS

40 RESET ( X + l 27 , Y)

50 SET (X,Y)

60 X = X+l

70 GOTO 40

99 GOTO 99

116

Hint: Wsap^aroUfid?

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Note that we have used the same trick as above (under Details) to avoid negative values

ofY.

What happens if you change line 40 to

40 RESET (X+126.Y)

and RUN?

Then;

40 RESEKX+125.Y)

And RUN.

Don't just sit there — try them! See what you almost missed?

EXERCISE 20-3 : Change the last two programs so that they move the dot up and to the left

respectively. [%

Now, let's have the dot move down until it strikes a barrier. The program is:

10 INPUT "HORIZONTAL STARTING POINT (0 TO 127) "(X

20 INPUT "VERTICAL STARTING POINT (0 TO 47) ";Y

30 INPUT " LOWER BARRIER" ;K

40 CLS

50 FOR M=0 TO 127

60 SET (M,K)

70 NEXT M

80 RESET ( X , Y+47)

90 SET(X,Y)

100 Y=Y+1

I

117

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


110 IF Y<48 THEN 130

120 Y=Y-48

130 IF YOKTHEN 80

999 GOTO 999

The dot appears to strike the barrier and stick to it.

Now let's have the dot start in the middle and ricochet from both the top and the bottom:

10 CLS

20 FOR M=0 TO 127

30 SET (M,0)

40 SET <M,47)

50 NEXT M

60 Y=14

70 D=l

80 RESET (64.Y+48-D)

90 SET<64 ,Y)

100 Y=Y+D

110 IF Y=48 THEN 130

120 IF YO-1 THEN 80

130 Y=Y-2*D

140 D=-D

150 GOTO 90

999 GOTO 999

118

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


The change in direction of the moving dot is caused by line 140 D=-D, Note that we must

be careful not to accidentally erase part of the boundary. To do this, we not only move the

dot back 2 steps with line 130 {after moving it forward 1 in line 100) but we also return to

the SET in 90, rather than to RESET in 80. Tricky, tricky. You can kill the whole day
messing around with this silly bouncing ball. Rather good resilience, eh?

Real Moving Pictures

We can draw whatever figures we like. Let's try a stick man. First, his legs:

10 CLS

20 X=64

30 FOR K=0 TO 7

40 SET (X+K.40+K)

50 SET (X-K.40+K)

60 NEXT K

999 GOTO 999

and RUN.

Then add his body and arms:

70 FOR K=0 TO 5

80 SET(X+K,34+K>

90 SET(X,34+K)

100 SET(X-K,34+K)

1 10 NEXT K

and RUN .

And finally his head:

120 SET(X,32)

"I'M A LEG MAN, MVSE1F."

119

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


1 30 SETCX+1 , 33

)

140 SET(X-1,33)

and RUN.

Now let's try and move him to the right. Add

45 RESET( X + K-l ,40+K

)

55 RESETC X-K-l ,40 + K )

8 5 RESET ( X+K-l ,34+K)

95 RESEK X-l ,34+K )

105 RESETt X-K-l ,34+K

>

1 25 RESETt X-l , 32

)

135 RESET(X,33)

145 RESETt X-2 , 33

)

150 X=X+1

160 GOTO 30

and RUN .

Sure moves funny, doesn't he? Well, I'm no animator either, but I'm sure you're beginning

to get the idea.

This has been one long and active Chapter . . . and to think all this with only the SET and

RESET statements. Think of the good things to follow with two more commands! And
by simply exchanging RESET for SET, in many cases we could have drawn the same pic-

tures, with dark on a light background instead of light on dark. You might want to give that

a try.

OK, so I'm no artist . * .!!

120

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Because the ideas come so fast in the area of graphics, we have deliberately chosen to show
you a lot of examples without getting bogged down in detailed explanations of how each
one works. There is no substitute for lots of experimenting with graphics, and you now
know the basics. Put in your time, stuci , he examples, and soon you can apply for member-
ship in the artists' guild.

Statements

SET

RESET

Learned in Chapter 20

121

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

122

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 21

Numeric Arrays

We know that we have the 26 letters of the alphabet available to use as variables. We've
also discovered that very few of our programs have required anywhere near that many
variables. There are times, however, when we wish to have more variables available — some-
times hundreds or even thousands of them, to use as names for many different pieces of
data we are storing and want to "retrieve" easily.

The way out of this little dilemma is with an array. Array is just another word for "lineup",
"arrangement" or "series of things". Let's say we're talking about a collection, arrangement
or lineup (array) of a number of autos, all of which have different license plates (address
numbers).

To be specific, we have 10 cars lined up, as in an array. They are all the same except for
their engine size — and each has a different license plate number. Let's say the license plate

numbers are from 1 to 10, and we want to use the Computer to quickly spit out the engine
size when we identify a car by license number. This might not seem like a real heavyweight
problem — but, as before, we discover the full potential of these things by learning them
little steps at a time.

Numeric Amy? . must be some kind ofnew

Let's assume the license number and engine sizes are as follows:

LICENSE #

1

2

3

4

5

6

7

8

9

10

ENGINE
(cubic inches)

300

200

500

300

200

300

400

400

300

500

123

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Now, we could give each of these cars a different letter name, using the variables A through

J, but what a waste — and what will we do when we have a thousand cars, not just ten?

Your TRS-80 LEVEL I Interpreter provides for a single array, and it is called "A". This is

not the same as the alphabet variable "A", and it is not the same as the "A" used in the

string variable A$. It is a third and totally separate "A". You will recognize it as

A-sub(something). We will name the cars A(l) through A(10), pronounced A sub 1 through

A sub 10. Get the idea?

Next, let's store the car engine sizes in a line or two of DATA statements.

Type in

:

100 DATA 300.200,500,300,200

110 DATA 300,400,400,300,500

Notice how careful we are to keep the DATA elements in order, from 1 to 10, so the first

car's engine is found in the first DATA Location and the 10th one's in the last location.

Now we have to "spin up" an array inside the Computer's memory to make these data

elements immediately addressable. Think how difficult it would be to try to address the 7th

engine (or the 7 thousandth!) for example, using only what we've learned so far. It can be

done using only DATA, READ and RESTORE statements but it's very messy and slow.

The easy way to create the array is as follows . . . Type in:

50 FDR L = 1 TO 10

55 READ A(L)

60 NEXT L

. . . and RUN.

Nothing happen? Yes, it did. RUNagain and note that something happened because it took a

little time for READY to return. We simply didn't display what did happen.

What's that - you're n&f sure you believe that

there canbe three sepamteond different storage

places for these "A" item? 0K,tryit-type:

' '< £.*.£i

i

y'ow-name; )
;

;

then type:

PRINT A, A$, A{ 1 )

» i . NOW what do you think? Did that make you
" a believer??

;
' '^\-0'.::^ ?^-^::-

:[}
--^

Big words meaning "so we can find a car fast!"

124

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


We obviously used a FOR-NEXT loop to READ 10 DATA elements, and named those
elements (or "cells") in which they're stored, A(l) through A(10). Let's see if we can
PRINT out the values in those array elements.

Type:

200 FOR N = 1 TO 10

210 PRINT A(N)

220 NEXT N

. . . and RUN.

Aha! It works, but how? We read the DATA elements into an array called A(L), but printed
them out of an array called A(N). What gives? Oh, nothing, really. The array's name is "A".
The location of each data element within that array is identified by the number which we
place inside the parentheses. We can bring that number to inside the parentheses by using
any of our 26 letter variables, and can even do some simple arithmetic inside those paren-
theses if we wish.

Remember, though, there is only one array, and its name is "A". Its elements are numbered,
and called A-sub (number).

Let's work some more on the program.

Type:

170 PRINT

180 PRINT "LICENSE #", "ENGINE SIZE"

210 PRINT N,A(N)

. . . and RUN .

Now that's more like it. We have every license number, every engine size, and are not "using
up" any of the 26 alphabetic variables. Having demonstrated that point, erase lines 20(5,

210 and 220, and type:

10 IN. "WHICH CAR ' S ENGINE SIZE DO YOU WANT TO KNOW";W

2 10 PRINT W.A(W)

... and RUN.

Some pure mathematicians might insist on catling

A{X) -A "OF" X. Who needs that added
conftision? Best 'teat you know, just in' *s$& ; : M

125

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Get the idea? Can you see the beginning of a simple inventory system for a small business?

Let's go one small step {for mankind) further. Suppose you know the color of each of the

10 cars, and for simplicity, suppose they are coded 1, 2, 3 and 4. We might then have a

master chart that looks like this:

LICENSE #

1

2

3

4

10

ENGINE SIZE

300

200

500

300

20p

300

400

400

300

500

COLOR CODE

3

1

4

3

In the language of professional computer types, this is called a matrix. A matrix is just an

array that has more than one dimension. (Our first array had the dimension of 1 by 10.)

This array has a horizontal dimension of 2 and a vertical dimension of 10. If you wanted

to be terribly inefficient about the matter, you could say that this is a 3 by 10 array, count-

ing the license number. If so, then our original one would have been a 2 by 10 array — but

who needs it? As long as we keep our license numbers in a simple 1 to 10 FOR-NEXT

loop, and our DATA in proper sequence, we can keep our arrays simpler and easier to

handle.

How then can we handle this 2 by 10 matrix? We have already used up our A array ele-

ments numbered 1 through 10. Oh, you want to know how many array elements we have to

work with? Very good! What was your name again? (Let me mark that down.)

Assuming you left our last program untouched, type:

126

ENGINE SHE? WHAT ENGINE?'

You might want to think of a matrix as a chart

with a certain number ofcolumns of informatjon.

First you set up the chart, then how many
columns of info can you get in . . .? -

•

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


PRINT MEM

and you will get a return of about

3370

We have 3370 memory cells left unusued. Again using the calculator mode, type:

PRINT 3370/4 -1

and we get

841.5

Thus, by dividing the remaining memory by 4, and subtracting 1, we found there is room
for 841 more array elements. Lots of room left. We never had it so good. Each array ele-

ment occupies 4 memory locations, whereas each letter variable requires only 1.

Well, with memory to burn, let's just arbitrarily assign array locations 101 through 110 to

hold the color code. We also have to put the color code info in the program using a DATA
statement. From the table, type:

300 DATA 3,1,4,3,2,4,3,2,1,3

and

80 FOR S = 101 TO 110

85 READ A(S)

90 NEXT S

... to load the color code DATA into the array. The array element numbers 11 through 100
are not used, nor are those from 111 to the end of memory, since they have not been
formally assigned any values.

Now we need to find some way to display all this good information. Change these lines:

10 IN. "WHICH CAR'S ENGINE 6 COLOR DO YOU WANT TO KNOW";W

180 P. "LICENSE #", "ENGINE SIZE" , "COLOR CODE"

210 PRINT W, A( W) , A ( W+100)

'flmt'i for41t ofmemory. With more memory

*rti« 841.5 figure assumes you have only 4K of U
memory- With more memory , the ^number would
be corres|>ondroglyhigher.

Yott might stash that bit of information away ft»

safekeej>itig. In a long program where memory
might get scarce you may want to refer to it.

127

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


. . . then RUN.

Check your answers against the 2 dimensional matrix chart we gave you earlier. They should

agree.

Let your imagination go. Can you envision entire charts and tables stored in this manner?

Entire inventory lists? How about trying to find a car which has a certain size engine AND a

certain color? Hmmm. We will come back to the Logic needed for that last one in a later

chapter.

EXERCISE 21-1 : Assume that your inventory of 10 cars includes 3 different body styles,

coded 10, 20 and 30, as follows:

LICENSE # BODY STYLE

1 20

2 20

3 10

4 20

5 30

6 20

7 30

8 10

9 20

10 20

Modify the resident program to print the body style information along with the rest when

the car is identified by license number.

m

A Smith & Wesson Beats 4 Aces

If we want to create a computerized card game (they make good examples to show so many

things), how can we set it up so we draw the 52 or so (watch the dealer at all times) cards

in a totally random way? Answer: Spin up the deck into a single-dimension array, pick

array elements using a random number generator, as each card is "drawn", set its array

128

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


element value equal to zero, then test each card drawn to be sure it isn't zero. Now that
is really simple!

We will now, a step at a time, write a program which will draw, at random, all 52 cards
numbered from 1 through 52, and print the card numbers on the screen as they are drawn.
No card will be drawn more than once. When all cards have been drawn, it will print "END
OF DECK."

You do a step first, then check against my example. Then change yours to match mine —
otherwise we might not end up at the same place at the same time.

Step 1 : Spin up all 52 cards into an array.

30 FOR C=l TO 52jREAD ACO:NEXT C

50 DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

55 DATA 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35

60 DATA 36,37,38,39,40,41,42,43.44,45,46,47,48,49,50,51,52

At this point, all you can tell when RUNning is that it is taking some processing time since

the READY doesn't come back right away.
1

Shhhh! I know there's an easier way to progiaift

tftis;sp«eiai case; tot ft doesn't teach what's nee4#&

Step 2: Draw 52 cards at random, printing their values.

90 FOR N = 1 TO 52

1010 V = RND{52)

110 PRINT A( V)

;

120 NEXT N

m

129

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


True 52 card values are printed on the screen, but if you look carefully, the same number

appears more than once. This means that some "cells" are not being READ and some READ

more than once.

Step 3: When a card is drawn, set its array address equal to zero. Test each card drawn to

be sure it is not 0, When 52 cards have been drawn and printed, type END OF DECK.

90 p = 52

105 IF A( V) = G. 100

120 A< V) =

130 p = P - 1

140 IF P<> GOTO 100

150 PRINT "END OF DECK!"

Line 120 sets the value in cell A(V) equal to zero only if line 105 finds it NOT equal to zero

already, letting the program pointer fall through.

When a "fall through" occurs:

1. The card's value is printed (line 110)

2. The number stored in that cell is set to zero (line 120)

3. Line 130 counts down the number of cards printed. Line 90 initialized the number of

prints at 52.

4. The number of prints is tested (line 140). When there are no more prints to go,

END OF DECK! is printed (line 150).

Pretty slick — and you don't have to watch the dealer (just the programmer).

But how do you really know that every card has been dealt? Write a quick addition to

the program to "interrogate" each array cell and print its contents.

130

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


200 FOR T = 1 TO 52

210 PRINT A(T)

;

220 NEXT T

RUN . . . and every cell comes up zero. If you don't really trust all this, change line 90 to

read:

90 P = 50

RUN , and see what happens,

AHA! It flushed out those 2 cards in the sleeve, didn't it.

Reinitialize P at 52, eliminate your test program lines 209, 210 and 220 and you end up
with a good card-drawing routine. You might want to clean it up to your satisfaction and
save it on tape for future projects.

Question: Why does the printing of card numbers slow down to a near halt as those last

few cards are being drawn. Is the dealer reluctant?

Answer: The random number generator has to keep drawing numbers until it hits one that
is the array address of an element which has not been set to zero. Near the end of the deck,
almost all elements have been set to zero. The random number generator has to keep draw-
ing numbers as fast as it can to find a "live" one.

Look again at the card numbers printed. There will not be any duplication. No stray aces.

There's More?

In the unlikely event you have a program which takes all 26 letter variables, you can use
array locations to serve as numeric variables. Remember, however, each one requires 4 times
as much memory space as a simple letter of the alphabet. Clear out the memory. Then type:

10 A( 870 ) = 3

20 A{ 871 ) = 4

30 2 = A{ 870 ) * A< 871 )

40 PRINT A(870 )

,

A(871) ,Z

. . , and RUN.

131

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


The answers of course are:

3 4l2
Try typing

10 A< 1000 ) = 3

. . . and RUN .

Why does it blow up? What does the SORRY mean? A check of the unused memory would

have immediately told us that the largest usable array element number was about 875. Try

P.M./4 -1

EXERCISE 21-2: Study the User programs in Part C to better understand the use of arrays

for storage and access purposes. Time spent studying programs written by others is wisely

invested.

HHMNHE£&tfl*

Learned in Chapter 21

".-^ ° v .3 "."^^ ,'
v

° .
""" .;* ; ^.-"° v

.
':.' .-'ir "'.»- ,.'-i'i

Miscellaneous

Arrays

I
Again, 875 is/ths -result when you only hav#4K of

"' '-'": ':.;.V' : '"" '- '':':'''. ' '-,;
.
::'

132

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 22

Advanced Graphics

Remember the bouncing dot? Wouldn't it be nifty if we could get the screen to say "PING"
each time the dot bounced off the barrier? Well / think it would be nifty, so we're going to

do it. But first . . .

We learned all about SET and RESET earlier. Now we will learn about
PRINT AT— a special type of PRINT statement especially useful in graphics, and
POINT(X.Y) — a quite unrelated statement which allows us to look at any of the

6144 graphic block locations and get an answer to the question "which ones are ON
and which are OFF?" A super powerful statement, and it's even useful!

I thought you printed ON, not printed AT
Learn something new every day. The PRINT AT (also written PRINTAT and P.AT) state-

ment allows us to begin printing starting at a location number. Example, type:

10 CLS

50 PRINT AT 200, " HELLO THERE 200, WHEREVER YOU ARE."

. . . and RUN.

Where is 200? Back to the Radio Shack graphics layout chart (Video Display Worksheet).

If you don't have one handy, there's one back in Chapter 20.

With the aid of an ordinary household electron microscope, the words "PRINT AT" are

clearly seen on the upper left hand corner of the sheet. Also, an arrow pointing to a set of

numbers. Further scrutiny discloses a tiny "X", obviously referring to the address numbers
on the "X" Street — and a tiny "Y" pointing to the "Y" numbers for "Y" Avenue. A truly

astute researcher will also see the "TAB" numbers — all 64 of them (starting with 0).

The PRINT AT numbers start at and go through 63 — in the first line. They then pick up
on the second line with #64 and continue through #127. The third line starts with #128,
etc. The PRINT AT divisions are really the same as those for TAB except PRINT AT does not
start over again with zero on the second line. It keeps going right on through PRINT posi-

..yanloft oar attempt at humorl'^£oMng a little

fun at ourselves here. .!

133

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


tion #1023. This perhaps strange sort of numbering is not so strange at all when you

consider the problems we had very early in the graphics game with the fool carriage return

scrolling our light right off the screen. The PRINT AT statement does not trigger a scroll

after it has done its printing, EXCEPT IN THE LAST LINE, between print positions #96(9

and #1023. Further, P.AT can directly address any of the 1023 printing locations (not light

block locations — they are very different). Trailing semicolons are needed only after state-

ments printed on that last or bottom line of the video "page".

You will soon see how valuable all this is.

Oh, It's That Time Already?

Let's create a 24-hour clock. (Why not

this obscure print statement logic.) Type:

sounds like more fun than digging through all

10 CLS

20 PRINT AT 407, **H M S"

30 FOR H = TO 23

40 FOR M = TO 59

50 FOR S = TO 59

60 PRINT AT 470, Hi ":";M; ":"; S

70 FOR N = 1 TO 500: NEXT N

80 NEXT S

90 NEXT M

100 NEXT H

and RUN .

Nothing to it. Ahem!

"Hello? Bureau of Standards?"

Of course the accuracy of this timer depends on how closely you calibrate it. We know that

the TRS-80 with LEVEL I BASIC will execute somewhere around 500 simple FOR-NEXT
loops per second when written as shown in line 70 — a multiple statement line. If you really

134

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


get carried away with this program, you will want to calibrate it with a precision-type

timepiece (increasing or decreasing the "500" figure as needed). Over the short run, this is

quite a good timer. Note that we are not triggering this with the 60 Hz line frequency, but

relying solely on the amount of time required to execute FOR-NEXT loops.

Oh, Yes . . . The PRINT AT . . .

Anyway — let's not lose sight of the forest for the trees (or something equally trite). The
purpose of this little program is to demonstrate the PRINT AT statement. We used it twice.

By carefully squinting at the layout chart you can find address #407, with #470 right

below it. With blazing speed, the HMS (no, no, not Her Majesty's Service — it stands for

Hours, Minutes and Seconds), are printed — and the HM&S updated each second.

For the real clock nut, see Part C for an operational clock program. It only needs your
closer calibration to be an acceptable sundial. Most expensive clock in the house!

That's How the Ball Bounces

Meanwhile, back with the bouncing ball. Let's reload the program from the first graphics

chapter. It reads:

10 CLS

20 FOR M=0 TO 127

30 SET (M,0)

40 SET (M,47)

50 NEXT M

60 V = 14

70 D = 1

80 RESET <64,Y+48-D)

90 SET (64, Y)

100 Y = Y+D

110 IF Y=48 THEN 130

NOTE: No carriage-return-suppressing semicolons
follow the PRINT AT statements - sloe* itoy are

not on the bottom print line
:;'" ? ;V:":." ><-<}\]::,-^Z:-.'\

'.'

135

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


120 IF YO-1 THEN 80

130 Y =Y-2*D

140 D=-D

150 GOTO 90

999 60TD 999

Since we did not explain in detail how that fairly simple program worked, take time now to

see if you can follow it through. When you have it figured out, tackle this exercise:

EXERCISE 22-1 : Using PRINT AT statement(s), cause the word "PING" to appear near the

ball each time it bounces off either the top or bottom boundary.

Isn't it amazing how close we are to getting to some of the actual video games that are all

the rage? — and yet it's really so simple and logical.

Merely for Display Purposes

A good way to get a feel for PRINT AT (or any feature) is to look at a fairly simple program

which illustrates its use. This program lays out a graph format on the screen. What you do

with it beyond that point depends on your own needs and interests, but it is worth entering,

studying and getting a feel for its use. Type:

10 CLS

20 K = 900

30 F .X = 1T059

40 P.ATK+X, " . " ;

50 N.Xi K = 964

60 FOR Y = TO 13

70 P.ATY*64 + 5 ,
" .

"
;

80 NEXT Y

136

One noteworthy procedure in this program is the

use of trailing semicolons after PRINT AT state-

ments. The reason^again, is that theprinting is

taking piaee in the last line on the screen so the

carriage return vrbald activate £ scroll. We there- .

fore have to suppress the carriage return with the

•.semicolon. . .,-,•.'•••, '"
'

"-"

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


100 P.AT20,"GR APH HEADING"
150 F.N = TO 14

200 P. ATN*64 , 14-N J

250 N.N

300 F ,X = TO 5

310 P. AT K+10*X,X;

320 N.X

400 F.X=6T056 STEP10

410 P .AT K + X ,
" s

"
;

420 N.X

999 G.999

What is the POINT of all this?

The POINT(X,Y) statement stands pretty much isolated from the other 3 graphics state-

ments. It needs them, but they don't need it at all.

POINT(X,Y) interrogates (what a great technical word) that graphics point on the screen

with the address of X,Y. If that point is lit, the POINT statement says "1". If it is dark, the

POINT statement says "0". That's really all there is to it. Of such great simplicity great

power is derived.

Let's give POINT a little exercise before looking closer. Since it also works in the calculator

mode, type

PRINT POINTt 30 ,30)

Since we had not lit 30,30 the answer came back with 0. It also can be abbreviated. Type:

P.P. ( 30,30)

Same thing:

Interrogates — just asks a question; but it's in logic

form . . .. true or yes.™ 1 and Mm or rtogivesa fy

Tho they can both be abbreviated P., the paren-

thesis following the second P. tells the Computer
that it is POINT and not PRINT.

"." - ;/; '.".Ji--|^"'-----:. :% ?°V-
'

-i
.' :.1.V-' -1'

137

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Let There Be Light

Let's light up a spot on the screen, then interrogate that point and see what happens. Type:

10 Y=1:N=0

20 IN. "DO YQU WISH TO LIGHT THE BLOCK (Y/N)"jQ

30 CLS

40 IF Q = GOTO 80

50 SET(75,20)

60 GOTO 100

80 RESET(75,20)

100 IF POINT(75,20) = 1 P.AT200,X(Y, " IS LIT"

200 IF POINT(75,20> = P . AT200 , X ; Y ,
" I S DARK

"

999 G. 999

And RUN several times. Answer either YES or NO, following the program action to see

what is happening. Pretty simple isn't it? Really sort of a status-reporting system. Think

what we could do if we set something like this up in 2 nested FOR-NEXT loops so we
scanned the entire screen and got a status report on each point. Hmmm. Almost like a radar

scan of the terrain. Hmmm some more.

2001 Here We Come

Snug up your seat belt, type and RUN the following program, then sit back and watch

POINT in action. Study the display very carefully as it runs, looking for the many things

that occur. This 3% minute "moving picture" really tells all you need to know about the

POINT statement.

10 REM * DEMONSTRATION OF GRAPHICS 'POINT 1 STATEMENT *

20 P=15 : L=l 19

30 CLS

40 P.AT5 ."THIS IS A DEMONSTRATION OF THE POINT STATEMENT ";

138

Y and N stand Cor Yes and No. Your input can be

.

. .«itteeir¥orY^,,N,.ar:No i
: "<^.^rj;^>:^^i>^:^£is^s$

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


50 P.AT56 , "X Y" i

100 F.I=1T0 P: SET(RND( 1 13) , RND ( 45)+2) : N.

I

110 F.X=0 TO 111:F.Y=0 TD 47

120 IF POINT<X,Y) = GOTO 160

130 P. AT L,X;iP.AT L+4,Y;

140 L=L+64

150 G. 170

160 SET(X.Y) sRESETtX.Y)

170 N.Y:N.X

180 P.AT5," THE COORDINATES OF THE GRAPHICS BLOCKS ARE >>— >> "
j

190 P. AT 0;

200 G.200

Vectoring in on Darth Vader's Death Star Fleet . . .

If that one didn't blow your mind, let's take the program apart a line at a time:

Line 10 is just the program identification note

Line 20 P is set at 15, the number of "targets" to be randomly placed on the screen by
the FOR-NEXT loop and the random number generator in line 100. L is set at 119,
the starting point for printing the coordinates and their headings in lines 130 and 140.

Line 30 clears the screen for action.

Line 40 and 50 use PRINT AT to print the heading.

Line 100 generates 15 addresses and SETs 15 lights.

Line 110 uses two nested FOR-NEXT loops to establish a "scanner", testing every
graphics point on the screen.

Line 120 tests to see if the point being addressed is off. If so, the address printing and
related incrementing of the next PRINT AT location in lines 130 and 140 are bypassed.

Line 130 prints the values of X and Y if the POINT test in line 120 "fell through", mean-
ing that the point being tested was not off.

Line 140 increments the PRINT AT address for the next time line 130 prints the coordi-

nates. By adding 64, the next printing will directly line up under the current heading
and numbers. (See the layout chart if you can't follow it in your head.)

139

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Line 150 is critical, since it jumps over a RESET. Without this jump, the light blocks

would be erased when they are interrogated. (Try deleting the line and RUNning
to see.)

Line 160 is just a foxy display trick. It causes a blinking light to "appear" to be scanning

all points. Actually, line 160 is just turning blocks ON and OFF as the Computer

interrogates them. Since we don't want to turn off blocks that are already supposed to

be lit, we hop over this line when a real live block is hit. In reality then, this "roving

eye" never actually "hits" an "ON" block.

Line 170 merely closes the FOR-NEXT loops started in line 110

Line 180 replaces the heading that was erased by the POINT scanning process.

Line 190 simply moves the cursor (which can be a pesky light in graphics displays) back

to the far upper-left corner, to get it out of the way. It could have been moved to any

point, or just left alone.

Line 200 is the locking loop used to keep READY and the prompt from goofing up the

display.

Pretty simple when taken a line at a time, isn't it?

Oh yes, did you notice that the "moving dot" turned off the original heading? Did you also

notice that it took two passes of the dot to equal the width of one printed character (which

of course fits right in with what the layout sheet shows)?

The reason the heading was erased is that we deliberately chose not to protect it (like we

protected the blocks) from the RESET in line 160 in order to make the point. You could

write a little protective line if you wanted to (or reduce the vertical length of the scan to

avoid it)

.

Alpha or Omega?

There you have it — a good running start into graphics. Go now to part C where you will

find more ready-to-run programs. By giving them careful study, you will see the four

graphics statements in use, plus most of the rest you have learned about BASIC program-

ming. The possibilities from here are unlimited.

Learned in Chapter 22

Graphfes Functions ':.,€*'

POINT (X,Y)

PRINT AT

140

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 23

Flowcharting

Most of the programs we wrote so far were simple; but, they met fairly simple needs.

Suppose you want to write a program to play chess or bridge, evaluate complicated invest-

ment alternatives, keep records for a bowling league or a small business, or do stress calcula-

tions for a new building? How would you go about writing a complex program like that?

Answer: You break down the big program into a series of smaller programs. This is called

Modular Programming and the individual programs are called Modules. But how are the

modules related — and how do you write them anyway?

One way to plan a program is to make a picture displaying its logic. Remember, a

picture is worth a thousand words (or is it the other way around?). The picture that pro-

grammers use is called a flowchart. Flowcharts are so widely used that programmers have

devised standard symbols. There are many specialized symbols in use, but we will examine

only the most common ones.

BEGIN or END

PROCESSING BLOCK
(encloses something the

computer does without

making any decisions)

DECISION DIAMOND
(it branches off in dif-

ferent directions, depend-
ing on the decision it

makes.)

Module is just a 75-cent word for -
ll
s««iao)i- or

"building block" ...

141

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Each decision point asks a question such as "IS A LARGER THAN B?" or "HAVE ALL
THE CARDS BEEN DEALT?" The different branches are marked by YES or NO.

Another useful symbol is:

CONTINUATION

The circle usually has a number inside it which corresponds to a number on another page if

the flowchart is too large for a single sheet.

CONNECTOR ARROWS

Flowcharts are most helpful in designing programs when they are kept simple. A cluttered

flowchart is hard to read and usually isn't much more helpful than an ordinary written

program list. A good flowchart is also helpful for "documentation" to give you (or others) a

picture of how the program works — for later on, when you've forgotten.

There are no hard-and-fast rules about what goes into a flowchart and what doesn't. A flow-

chart is supposed to help you . . . not be more work than it's worth. It helps you plan the

logic of your program. When it stops helping and makes you feel like you're back in arts

and crafts designing mosaics, then you've gone as far as the flowchart will take you (or

more typically, you've passed its point of usefulness).

Let's look at some examples. Suppose we want to grade a 5-question test by comparing

each of the students' answers with the correct answer. We will put the correct answers in a

DATA statement in the program, enter a students' answers through the keyboard, compare

(grade) them, then print the % of correct answers. This procedure will be repeated until all

the students papers are graded.

142

execution proceeds.

. which program

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


The flowchart might look like this:

ADD 1 TO
NUMBER CORRECTYES ^_
PRINT CORRECT-

LINE 120

This flowchart has three decision diamonds. In the first, the Computer determines if an

answer is correct. In the second, the Computer determines if all the questions in a single

student's paper have been graded. The third one terminates execution when all the tests

have been graded.

EXERCISE 23-1 : Using the flowchart as a guide, write a program that grades a test having

five questions

.

For more complicated problems, you may want to subdivide the flochart into larger

modules, A master flowchart will then show the relationship between the flowcharts of indi-

vidual programs.
143

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


For example, let's say you want to write a program that calculates the return on various

investments. The options might be:

1 —CERTIFICATE OF DEPOSIT

2 - BANK SAVINGS ACCOUNT

3 - CREDIT UNION

4 - MORTGAGE LOAN

The main (or Control) program will select one of these 4 options using an input question,

execute the correct subprogram, and print the answer. Its flowchart might be:

{ START )

ENTER OPTION

CALCULATE
CERTIFICATE
OF DEPOSIT

CALCULATE
FOR BAM

K

SAVINGS ACCOUNT

CALCULATE
FOR CREDIT

UNION

CALCULATE
Ft> H MORTGAGE

LOAN

PfllNT

RETURN
ON

INVESTMENT

( "" )

144

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


We could now flowchart each of the individual programs in the blocks separately. The Cer-

tificate Of Deposit program would, for example, have to contain the rate of return, size of

deposit, and number of years in which the certificate matures. The order in which that pro-

gram inputs data and performs the calculations would be specified in its own flowchart.

EXERCISE 23-2: Write the master program as flowcharted, with a branch to a program to

calculate the return on a Bank Savings account paying simple interest.

EXERCISE 23-3: Choose a program from an early Chapter and design your own flowchart.

Learned in Chapter 23

Miscellaneous

Flowcharting

I
1

I

145

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

146

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 24

AND & OR
In classical mathematics (fancy words for simple ideas) there exist what are known as the

"logical AND" and the "logical OR".

So the One Cow Said to the Other Cow . . .

In Figure 1, if Gate A AND gate B AND gate C are open, the cow can move from Pasture

# 1 to Pasture #2. If any gate is closed, the cow's path is blocked.

PASTURE #1

ft,

cow

,/ GATE A / GATEB

PASTURE #2

/ GATE C FIGURE 1

The principle is called "logical AND".

In Figure 2, if gate X OR gate Y OR gate Z are open, then old Bess can move from Pasture

#3 to #4. That principle is called "logical OR". These ideas are both pretty logical. If the

cow can figure them out surely you can!

PASTURE #3

f^f
OLD BESS

PASTURE #4

/gate X
t

c/gate Y

1
gatez

FIGURE 2

Grit Your Teeth and Prepare to Say AAAAAGHH!!

Somewhere in the misty history of classical mathematics, a budding genius dedicated the

symbol "X" to mean AND, and "+" to mean OR. Ordinary arithmetic of course uses "X"
to mean multiply and "+" to mean add. To further confuse the matter, instead of "X", for

computers we use "*" to mean multiply. Our logical AND symbol, therefore, is
"*".

AAAAAAGH!!!!!

(I told you.)

By the way, this cow's name is Bessie.

K^ I \ "* ?^%^

• ~;~^™;-~;

TCSSin-IT'S ONLY LOGICAL.'

-"./'."''-.;."' -- :.^- : ^."
: ::i""-'- |.l

Now don't forget.. . in "logical" computer work:

* means AND
+ means OR

147

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Now For the Good News

Despite the frustration these so-called "logical" symbols inflict, using them is very simple.

Type:

10 Y=l :N=0

20 IN, "IS GATE 'A' OPEN" ;A

30 IN. "ISGATE 'B' OPEN" ;B

40 IN. "ISGATE *C' OPEN" ;C

50 PRINT

60 IF <A=1) * (B=l) * (C=l) THEN 100

70 P. "OLD BESSIE IS SECURE IN PASTURE # 1 .
*'

80 END

100 P. "ALL GATES ARE OPEN. OLD BESSIE IS FREE TO ROAM."

Be sure to use the Shift-7 key to get the single

quote mark. .
„...

Remember. . it we're using * here as the logical

. . . and RUN. Answer (Y/N) the questions differently during RUNs to see how the logical

AND works in line 60.

Where is the LOGIC in all this?

You should by now understand every line in the program except perhaps line 60.

Line 10 initializes the Y and N values at 1 and respectively.

Lines 20, 30 and 40 input the gate positions as open (which we defined as equal to "1"),

or closed (defined as "0"). We could have defined them the other way around in line

10 and rewritten line 60 to match, if we'd wanted to.

Line 60 is the key. It reads, literally, "If gate A is open, AND gate B is open, AND gate

C is open, then go to line 100. If any one gate is closed, report that fact by defaulting

to line 70."

Imagine how this simple logic could be used to create a super-simple "computer" consist-

ing of only an electric switch on each gate — add a battery and put a light bulb in the

farmer's house. The bulb could indicate whether the gates are all open. Such a "gate-

checking" computer would have only three memory cells — the switches.

148

Hmm. It would do the job a lot cheaper tba»Vfc-

fRS*8G '..
. .but would be awfully hard to play

Blackjack with. ..

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Back to the Subject

Look at line 60 very carefully. You have seen every symbol there before — but is there

something different about how they are arranged? Hmmmm?

Ah yes — the parentheses. They are the tip-off. There has been (until now) no reason at all

to enclose something like

A=l

in parentheses. When you come across a pair of parentheses enclosing an = sign, a ), a ( (or

a combination of these), you know logical math is being used. (Whew — that's simple

enough!) Having used the * (which you know means AND) now it will all make sense.

EXERCISE 24-1 : Using the above program as a model, and the "OR logic" seen in Figure 2,

write a program which will report Bessie's status as determined by the position of Gates

X, Y and Z.

Teacher's Pet

Here is a simple program which uses >instead of the equals sign in a logical test. The student

passes if he or she has a final grade over 60 OR a midterm grade over 70 AND a homework
grade over 75, Enter the program, RUN it a few times, and see how efficiently the logical

OR and logical AND tests work in the same program line (40).

10 INPUT "FINAL GRADE" ;F

20 INPUT "MIDTERM GRADE " ;M

30 INPUT " HOMEWORK GRADE " ;H

40 IF (F>60) + ((M>70) * CH>75)) THEN 70

50 PRINT "FAILED"

60 END

70 PRINT "PASSED"

Does this give you some idea of the power and convenience of logical math? The actual

grade numbers could, of course, be set at any level.

149

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Logical Variations

This next program example mixes equals signs, greater-than and less-than in the same pro-

gram. It determines and reports whether the two numbers you input are both positive, both

negative, or have different signs.

Analyze the program. Note the parentheses. They tell you to shift your thinking to "logi-

cal". Type it in and RUN.

10 INPUT "FIRST NUMBER IS" ;X

20 INPUT "SECOND NUMBER IS" ;Y

30 IF (X>=0) * ( Y>=0) THEN 70

40 IF (X<0) * (Y<0) THEN 90

50 PRINT "OPPOSITE SIGNS"

60 END

70 PRINT "BOTH POSITIVE "

80 END

90 PRINT "BOTH NEGATIVE"

With Graphics Too, Yet

Yes, the logical symbols also work along with the graphics statements. See if you can figure

out the surprise caused by the logical OR in line 40. Type this program in, and RUN.

10 CLS

20 FOR X=0 TD 127

30 FOR Y=0 TO 47

40 IF CX>=64) * (Y>=24) THEN 60

50 SET (X t Y)

60 NEXT Y

70 NEXT X

150

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


99 GOTO 99

What happens if you replace the * in line 40 with a +? After you think you have it figured

out, do it and see the result.

Did you guess right???

There's More?

Oh, yes — the only limit is your imagination. See how easily the logical notation makes the

drawing of lines? Type and RUN:

10 CLS

20 FDR X=0 TO 127

30 FOR Y=0 TO 47

40 IF ( X = 64 ) + ( Y = 24 ) THEN 60

50 SET (X,Y)

60 NEXT Y

70 NEXT X

99 GOTO 99

What happens to the program if you replace + (OR) with * (AND)? Sketch your estimated

result, then change line 40 and try it.

Hope you got it right. If not, it really sneaked up on you, didn't it!

Using the INT function we can create an elaborate checkerboard. The reasoning is:

In the horizontal dimension.

The INT(X/16)*16-X will equal when X equals 0, 16, 32, 48, 64, 80, 96 and 112

In the vertical dimension

The INT(Y/6)*6—Y will equal when Y equals 0, 6, 12, 18, 24, 30, 36 and 42.

Vt& fBSEAKj ta;^t : out at the program's eadiess
toe|*;.;:'::-.

:;::
.

.'.'':.'
:

.

;
.

:

:

:'".'.;. :

-
'.

:''
;

.:77k: r ;'.':':
;

.
..'

;.

:7

Oh c©rae:08yii*s*ery .$&$&> tfjKHi take the tii

and thiBtk it iimmgfal

151

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Replace the old line 40 with

40 IF <

{

INT(X/16>* 16-X)=0)+< C INT( Y/6)*6-Y)=0) THEN 60.

and you will create an elaborate eight-by-eight checkerboard.

And on and on it goes . . .

And In Conclusion

The illogic of logical math is worth the hassle. As one last fun program, enter and RUN this

"Midnight Inspection." Line 100 checks each response for a NO answer (instead of a YES).

Using logical OR, it branches to the "no-go" statement (line 130) if any one of the tests

does not match the expectation.

10 CLS

20 Y=l :N=0

30 P. "ANSWER THESE QUESTIONS WITH *YES' OR 'NO'." sP.

40 IN. "HAS THE CAT BEEN PUT OUT" ;A

50 IN. "IS THE PORCH LIGHT TURNED OFF" ;B

60 IN. "ARE ALL DOORS AND WINDOWS LOCKED" ;C

70 IN. "IS THE TELEVISION TURNED OFF" jD

80 IN. "DID YOU TURN THE THERMOSTAT DOWN" ;E

90 P . s P.

100 IF ( A=N)+(B=N)+(C=N)+(D=N)+(E=N) THEN 130

120 P." GOODNIGHT" sEND

130 P. " SOMETHING HAS NOT BEEN DONE. DO NOT GO TO BED"

140 P. "UNTIL YOU FIND THE PROBLEM!"

150 GOTO 40

§
s

152

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


In most cases, AND and OR statements are interchangeable if other parts of a program are
rewritten to accommodate the switch.

EXERCISE 24-2: Rewrite line 40 in th. checkerboard program to produce a black-on -white
checkerboard instead of white-on -black.

Learned in Giapter 24

Miscellaneous

* as a logical AND
symbol

+ as a logical OR symbol

153

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

154

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 25

Advanced Subroutines

Back in Chapter 15, we touched on the subject of subroutines. We even "called" one, just

to get the hang of it. But then we rewrote that subroutine as a part of our main program,
and got the same results just as easily. So what's so special about subroutines? That's what
this chapter is about.

To refresh your memory: A subroutine is a special kind of program which the Computer
ignores until a GOSUB statement calls for it. After executing the subroutine, the Computer
automatically RETURNs program control to a point right after the GOSLJB statement. So
no matter how many different times and places your program "branches" to a subroutine,

program control always returns to the point where it left off.

An important application of subroutines is the calling of special routines that allow the

Computer to do things that it couldn't do otherwise. Take square roots, for example. Many
larger forms of BASIC (like Radio Shack LEVEL II BASIC) will let you compute JX
simply by using the statement, Y = SQR(X), LEVEL I BASIC doesn't have this ability,

so we need to add a fairly simple program to accomplish the same thing — a subroutine.

There are many other special routines that we can call to make the computer "educated
beyond its intelligence". Most are very mathematical, and are only for rather special

applications. But when they are needed, they are badly needed. Even if you don't think
you'll have use of them, go through this lesson anyway. You'll probably find some special

program in a magazine or elsewhere that you desperately want to run on your Computer —
but it needs a trigonometric, logarithmic, or other higher-math function. You don't have
to like or even understand these special routines to be able to use them like an expert. Give
it a good shot.

Whatever became of good old Pythagoras — and who cares?

Remember the fun days in geometry and algebra class when you were engaged in such excit-

ing things as trying to find the length of the hypotenuse of a right triangle when the lengths

of the other two sides were known? Welcome back! The Pythagorean rule says, "The length
of the hypotenuse is equal to the square root of the sum of the squares of the remaining two
sides." No wonder you took ceramics instead. We know all about equations now, though,
so we can state it much more simply:

L= v/A 2 + B 2

"ME? A SUB?"

Functions like SQR are called intrinsic (built-in)^;

when they are available directly, without the need
for calling a special subroutine. ABS, INT and;

,

END are a few of the intrinsic functions available

in.LEVJL.I BASIC., . .
. „ ;

155

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


where the triangle looks like this:

A = 3

B = 4

Okay. That's not too grim. So let's write a program to find the value of L, when A = 3 and

B = 4. If we had the built-in square root function (which we don't), our program might look

like this

:

10 REM * SQUARE ROOT SOLUTION WITH SUBROUTINE *

20 IN. "THE LENGTH OF SIDE A = ";A

30 IN. "THE LENGTH OF SIDE B = ";B

40 L = SQR(A*A + B*B)

50 P. "A", "B" , "L"

60 P. A ,B ,L

Now type in the program carefully and RUN.

Caarash! The

WHAT?

40 L=S?QR(A*A + B*B)

tells us the Computer does not recognize SQR. That means we'll have to call up the SQR
subroutine from Appendix A to make a workable program.

See the list at the end of this Chapter to determine which functions are available as sub-

routines in Appendix A.

Turn to page 216 of Appendix A and find the Square Root Subroutine. There are three

important things to look for when checking out any subroutine:

1. What is the input variable?

2. What is the output variable?

156

Whenever you come across a program with aft

intrinsic function you don't have, you'll go

";t&roagh this same procedure. First type in the

§| subroutine, then make a few minor changes in

ed.to#ei^t^;-
:

:
:

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


3. What other variables are used by the subroutine for internal calculations? You have to
have a high need for dangerous living to use those same variable names in the main
part of the program. Either that, or know exactly what you're doing. Best to change
the program to avoid re-using a subroutine's "internal variables".

Type in the square root subroutine exactly as it's listed. There is no room for error.

Now we need to interface it (that's high-powered computer jargon to impress your friends
with) to the resident program (more jargon — get the idea?). In short, we have to make them
match up.

Make these changes in the resident program

:

40 X = A*A+B*B j GOSUB 30030

45 L = Y

and RUN.

If your program ran, there was a slight pause before the Computer came back with the
answer:

A B L

line 3#pp0 prevents the Computer from crashing
into the subroutine after it completes your main
program* Atoays tnsertthts line when using .

subroutines.
;;:;:^

We send controjto 3<M&30 rather than 3#0i0 :-

because J0010 and 30020 are the "non-working'
parts of the program —they're just remarks for

identification only. ,

"
-

That's because the Computer has to do quite a bit of thinking to compute square roots.
(See, computers aren't so smart after all!)

If the program didn't RUN, go over the main program and the subroutine very carefully.
Did your GOSUB statement in Line 40 call 30030? And does your subroutine really begin
at line 30030?

Here's why we changed Line 40 and added Line 45:

Line 40 has two separate statements. X=A*A+B*B gets our input variables X ready.
GOSUB 30030 directs the Computer to the subroutine beginning at Line 30030. Lines
30010 and 30020 are remarks only. To speed things up, we skip over them. The Computer
executes the instructions there until it hits the RETURN statement in Line 30080, which
makes it return to the very next statement in our main program, Line 45.

Line 45 gives our hypotenuse L the value of the subroutine's output Y.

I

We want the square root of the entire expression

A*A+B*B, so we set it equai to X, which is the

proper input for the subroutine.

157

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


CSAVE!

Before going on to the next section, you may want to save the square root subroutine on a

cassette, to avoid the tedium of typing it in correctly again later. You can save all the sub-

routines separately, all together, or in various combinations. This will let you load just the

ones you need for a given purpose.

From Square Roots to Circles (Well, Ovals Anyway!)

While you've got the square root subroutine loaded, we'll demonstrate how scientific sub-

routines can be put to some fairly entertaining uses. Type in the following program:

10 CLS

20 FOR R = 2 TO 22 STEP 4

30 FOR A=-R TO R

40 X=R*R-A*A : GOSUB 30030 ! Y=INT(Y-.5)

50 SET (A+60.23+Y)

60 SET ( A+60.23-Y)

70 NEXT A

80 NEXT -R

90 GOTD 90

And RUN.

If you entered the program correctly, the Computer will generate a series of concentric

circles. The program uses the formula for finding the coordinates of a circle on a graph:

Y = JR*R-X*X

(Y is the Y-coordinate, X is the X-coordinate, and R is the radius.)

Use [BREAK] to get out program.

Actually they're ovals, because the graphics points

ate rectangular instead at square— it would ta&e a

slightly modified program to generate more perfect

circles. Care to try"?

158

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


You'll probably want to try "graphing" other curves using the subroutines, so we'll go
into a little detail on how our concentric circles program works.

Line 10 gives us a nice clear screen to start with.

Line 20 sets up a loop which increments the Radius R from 2 to 22 in steps of 4.

Line 30 sets up a "nested" loop which increments the X-coordinate of our graph from —

R

toR.
Line 40 computes the Y-coordinate of our graph as a function of the radius R and the X-
coordinate A. The square root subroutine is called.

Lines 50 and 60 center the circle on the Display and "draw it". Line 50 produces the lower
half of the ci&le, and line 60 produces the upper half.

Lines 70, 80 and 90 . . . you can figure them out for yourself.

From One Subroutine to Another

So far we've used GOSUB commands in the main program to call subroutines. Now let's be
neighborly — and let one subroutine call on another.

Suppose we. want to compute 3U — that's 3 times itself 11 times. We can compute it

directly as 3*3*3*3*3*3*3*3*3*3*3, right? But what about 3 1 ' 3 - that is, 3 to the
11.3 power? Simple multiplication isn't going to get us anywhere on this one. It looks like a
job for Supersub!

That's our Exponential Subroutine, which actually calls on two other subroutines before it's

through — one for logs, one for anti-logs. (These are not the opposing sides in a conservation
dispute. They're extremely useful math functions.)

Supersub derives its number-crunching power from a rather complex-looking equation:

xY = e
Y*logX

(You don't have to understand it, but it's nice to know it's there.)

All we have to do is provide the subroutine with the values for X and Y, in this case 3 and
11.3, and the rest is automatic. The subroutine goes and gets log 3, etc., and returns to our
main program with the final answer.

W«'reustog natural logs and auti;l«gs, as opposed; to
common log^ Bememoer, this is a classy operation!

159

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Turn to page 217 of Appendix A and find the Exponentiation Subroutine.

Type it in slowly (as if we needed to say that) and carefully.

Now type in the following "demonstration program".

10 PRINT "SEEKING THE VALUE OF X TO THE Y POWER"

20 INPUT " X = " ;X

30 INPUT " Y = " ;

Y

40 GOSUB 30120

50 PRINT "THE ANSWER IS";P

60 GOTO 10

And RUN . (Use [BREAK] when you want to get out of the program.)

Without trying to understand the mathematics behind it, let's trace the flow of the program

control from main program to the various subroutines and back.

Lines 20 and 30 provide values for X and Y.

Line 40 transfers program control from the main program to the Exponentiation Sub-

routine .

Line 30140 calls the log subroutine to obtain log(X).

Line 30230 returns L = log(X) to the exponentiation subroutine. (Note that control passes

to the statement immediately following the last GOSUB command — even though that state-

ment is on the same line in this case.)
Y L

Line 30140 now calls the exponentiation subroutine to compute e

Finally, Line 30150 adjusts the magnitude of P (don't ask questions!) and returns the

computed value P = X v to the main program, Line 50, for output.

Now let's go off on a tangent about Christmas trees.

Selecting a Christmas tree in the middle of a forest on a snowy evening in December can

be a trying process. Especially when you're seeking a tree that's exactly 28 feet tall (the tree

is going to be set up in a park downtown). You can climb up each tree, attach a 28-foot

tape measure, climb back down and check to see if the tape just touches the ground — and

160

It's along one -afteryou type it in and get- it

running properly, you^l want to save it on tape for

lateruse.

Note that the input variable X is changed by the

subroutine. Suppose we need this input value later

in the program. We can't refertothis original

value by calling it X,
:

because X has take on a new
value, The way around this common problem is

to use a "dummy variable" to hold the original

value of X. The dummy variable assignment must
;

be before the entry to the subroutine: '.

35 S-X
Adding thisline to our resident program saves

the value for later use. For example, we can now
change line 59 to

.%> PRINT S;.*"I«THE";Y;"= ";P. .

Watch out -for subroutines which change the ..-•.

.value-of theisput variable. T&e lowly "dummy
variable" ts quite handy in such cases.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


repeat the process until you find the right tree ... or surrender to frostbite. Or you can use
a little trigonometry.

Trigonometry will let you figure the height, H, of the tree from two simple facts: your
distance, D, from the base of the tree, and the angle, A, between the base and tip of the
tree as measured from the point at which you're standing:

If you're standing as indicated in the drawing, then

H = D*TAN(A)

(That's "H equals D times the tangent of angle A.")

Here's where the TRS-80 comes in. (You'll also need a very long extension cord to run from
the nearest electrical outlet to the site of the tree.)

TAN(X) is one of the trigonometric functions available as a subroutine for the TRS-80.
Turn to page 218 of Appendix A and find the Tangent Subroutine. (It's the longest of the
"trig" subroutines, because it actually contains two of the others, Sine and Cosine).

Type NEW to clear out the program memory and carefully type in the tangent subroutine

(steps 30300 to 30455). Be sure to add a protective END block: 30000 END

Now type in the following program:

1 tar IN. "HOW FAR ARE YOU FROM BASE OF TREE";D

20 IN. "WHAT IS ANGLE BETWEEN TIP AND BASE OF TREE";A

30 X=A:GOSUB 30320

40 H=INT( D*Y+ .5

)

50 IF H=28 THEN 80

60 P. "FIND ANOTHER TREE—THIS ONE IS"sH; "FEETTALL."

?A

,!»,

161

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


70 P. sGDTO 10

80 P. "CHOP IT DOWN AND TAKE IT HOME!"

RUN it. (After you've tried a few values for Distance and Angle, use Distance=16 and

Angle=60.) Hit
| BREAK] to get out of the program.

A few notes on how the program works:

Line 30 gives X the value of angle A. This is necessary because the subroutine needs an X-

input. Control is then transferred to 30320, the beginning of the tangent subroutine, which

returns a value for Y = TAN(X).

Line 40 computes the height as D times Y (D times the Tangent of the Angle), and then

rounds the answer off to the nearest integer.

Line 50 checks to see whether we've found our tree. If we have, program control goes to

Line 80, where a suitable message is printed. Otherwise, Line 60 tells us to find a new tree

and line 70 starts the program over again.

But you can't find an extension cord that's long enough.

And you can't see beyond 12 feet due to the fast-falling snow. So now you need to know

(in advance) what the angle will be when you're standing 12 feet away from a 28-foot tree.

Then all you'll have to do is find a tree that gives you that angle reading on your surveyor's

transit (or simple protractor) when you're standing 12 feet away.

Remember our formula,

H=D*TAN(A).

Well, in this case, we know H(Height) and D(Distance). What we're seeking is a certain angle

such that

H/D=TAN(A).

In short, we want to find "the angle whose tangent is equal to II divided by D". In trig-

onometry, that's known as the Arctangent of A.

Don't worry — we've got a subroutine for that one, too.

:i':
;'-•"-::

Why do we add .5 before using INT? Well, suppose

¥*D»27.& Siinply UluHgMT(27.6) would give us

an -answer of 27 — eveii though the unrounded

answer was closer to 28. By adding .5, we ensure

that the aunsbet is rounded properly. Try it for a

few othernumbers just to make &ir* it works

(e.g., 27.4, 14.8, 14:2), The tecfc$<jue is very-use-

ful throughout progrsmming*- whenever yoa :

ded number^

EXERCISE 25-1 : Write a program which accepts inputs for the height of the tree and your

distance from the tree, and computes what the angle should be. Use the Arctangent Sub-

routine on page 219 of Appendix A.

162

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


EXERCISE 25-2: Write a program that produces the graph of SIN(X), with X taking on
values from to 360 degrees in 1-degree steps. Refer to the concentric ovals program for

ideas on how to put your points on the screen. Remember that the ranges of X and SIN(X)
will have to be adjusted to fit the 128 by 48 position screen.

Learned in Chapter 25

;!M
* m-

:•:-

Subroutines —
regular and super

"Dummy variables"

Subroutines available in Appendix A:

Square Root
Exponentiation

Logarithms (Natural and Common)
Exponential (Powers of e)

Tangent
Cosine

Sine

Arc Cosine

Arc Sine

Arc Tangent

Sign

163

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

164

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Chapter 26

DEBUGGING PROGRAMS

Quick- the RAID!

By now, the Computer has given you plenty of nasty messages like WHAT?, HOW? and

SORRY. You know something's wrong, but it isn't always obvious exactly where, or why.

How do you find it? The answer is simple — Be Very Systematic. Even experienced pro-

grammers make lots of silly mistakes , . . but the experience teaches how to locate mistakes

quickly

.

Hardware, Cockpit or Software?

The first step in the "debugging" process is to isolate the problem as being either

1) A hardware problem,

2) An operator problem, or

3) A software problem.

1

1
i

Is it Farther to Ft. Worth or By Bus?

Starting with the least likely possibility — is the Computer itself working properly? Chances

are (and our fondest desire is) that the Computer is working perfectly. There are several very

fast ways to find out.

A. Type

PRINT MEM

1

or just P. Mi

If there is no program loaded into memory, the answer should be

3583

If there is a program loaded, the answer should be some value LESS than 3583.

If the answer is MORE than 3583 (assuming of course you have not added more
Radio Shack RAM), there may be trouble. Or, it's possible that the answer is a

NEGATIVE number . . . same solution.

m. 7679 (8K machine); 1$%?1 &&$&

That's Random Access Memory.

165

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Possible Solution

In either of the above cases, shut the Computer off completely. (Or, as they say in the big

time, "Take it all the way down.") Let it sit for a full minute before turning it on again.

Turn the machine back on, type NEW and try the P.M. test again. If the results are the

same, there is probably a RAM or ROM failure that will require Radio Shack Factory

Authorized servicing.

B. One Last Try

Before full panic sets in, however, type NEW and enter this program. It assigns every free

memory location in RAM a specific value, then reads that value back out onto the screen.

Type (very carefully):

10F.X=lTO876:A<X)=X!N.X:F.Y=lTO876:P.A(Y)s

20IFA<Y )-A( Y-n<>lP. "BAD"

30N . Y

Then, initialize A(0) to zero by typing

A(0 } =

Then, RUN

After about a 10-second wait for the array to "spin-up", the monitor should display

12 3 4 5 6 7 8 (etc
.
, through 8 7 6)

If the word "BAD" appears on the screen, you may have found the problem.

You will probably want to enter this test program into your computer, try it out before you

need it, then save it on tape and hope that you won't . . . (need it, that is).

Video Display Problems?

The Video Display is very similar to a television set. It has adjustments for brightness, con-

trast, horizontal and vertical sync, etc. If these fail to give the desired display, the problem

could be in the Computer.

Horizontal and vertical centering and "jitter" can be controlled by simple internal computer

166

>\wf. program in memory, bat at

i piobmj?Mat anyway- Vim could

try to save it oit cassette .tape before taming«!(.

the machine it it matee#yoirfeel any better,

. ROM. — that's Read- flinty Memory.

tor 8K ofmemoryT use 1889 instead of 876 irti

Line 1(9; for 16K, use 3947.

or 1889 -..or 3947. M

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


adjustments, but you have to know where to adjust. Don't mess with it, or you could end

up goofing up the voltage regulators instead, and wiping out the entire lineup of integrated

circuits. Very expensive fiddling around!

,AS THE WARRANT POllTTS
OUT ,:'.

. OPENING THE CASE:VOIDS YOUR
WARRANTY.

Idiot here - What's your excuse?

Of course you don't make silly mistakes!

Now that's settled,

1. Is everything plugged in? Correctly? Firmly?

2. Are the recorder batteries fresh (if you're using batteries)?

3. Have you avoided the recorder ground loop problems discussed in the cassette recording

chapter?

4. Is the recorder volume level properly set?

5. Is the recorder tone switch on "high"?

6. Are you using "legal" commands?

leffi6t»t>^;
i
';-;i^i^^me ;i*cMiBiS'l^"a''gdod idea

to plugm either Aux or Earphoae — but not both.

Conaecthig both can produce "ground loop"
l;~I»^til®.^Bp

;W^^^,haPttt;. ;;
'.;?.

;

.;.
:

.-.:

if so

Go walk the dog, then check it all over again.

If Then

If the trouble was not found in the cockpit or with the hardware, there is probably some-

thing wrong with your program. Dump out the troublesome program. Load in one that is

known to work and run it as a final hardware and operator check.

For a rgaliy complete checkout, load the

combined Funetionahd RAM Test program listed

in Appendix C it the test prograin nms ofcay, then
the bug is in your program.

Error Messages

When the Computer gives us a WHAT? or

ing program line, as in:

HOW? message, it usually points out the offend-

WHAT?

10 X=S?QR< 1-X*X)

In the case of WHAT? messages followed by a program line, the Computer inserts a ques-

tion mark just before the error. In this case, the Computer doesn't recognize SQR (remem-

ber, we don't have a built-in square root function in LEVEL I BASIC), so it reads 10 X=S
and then looks for a math operator, colon, end-of-line or other valid continuation. "Q" just

doesn't fit, so the Computer treats it as an error.

167

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


With HOW? messages, the Computer inserts a question mark right after the error. For

example:

HOW?

10 PRINT INTC I ) 7/23

The question mark tells us that the error was discovered during execution of the INT

function. We can guess that the value for I probably exceeded the allowable range for the

INT function (value should be greater than -32768 and less than +32768).

Now let's take a look at some of the common sources of "computer-detected errors".

1. Assume the error is in a PRINT, or INPUT statement.

Did you:

a. Forget one of the needed pair of quotation marks?

Example:

10 PRINT "ANSWER rs, X: GOTO 5

ERROR: No ending quotation mark after I S

b. Use a variable name other than a single letter of the alphabet?

Example:

10 INPUT AG.S1

ERROR: LEVEL I variable names can have neither more than one letter, nor a letter/

number combination.

c. Forget a semicolon or comma separating variables or text, or bury the semicolon or

comma inside quotation marks?

Example:

10 PRINT "THE VALUE I S ; "

V

ERROR: The semicolon is inside the quotation marks (so the "string" of words and

the variable are not properly separated.)

d. Forget the line number, accidentally mix a letter in with the number, or use a line

number larger than 32767?
Example:

72B3 PRINT "BAD LINE NUMBER."

L,-ERROR
e. Accidentally have a double quotation mark in your text?

Example:

10 PRINT "HE SAID "HELLO THERE ." "

How could we vetify ttiis immediately*? Jwst«!Qiri-

m«nd the Computer to PRINT I (usin^ho lifts:

'

number). ': '\:-^ :.'„.:..'. :',iw' /-::/ '.-:

Yes, we know it's ok if the missing quote is the; last

ehajtseter in the -line."

168

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


f. Type a line more than 70 characters long?

g. Misspell PRINT or INPUT (it happens!)?

h. Accidentally type a stray character in the line, especially an extra comma or semi-

colon?

2. If the error is in a READ statement, almost all the previous possibilities apply, plus:

a. Is there really a DATA statement for the computer to read? Remember, it will only

read a piece of DATA once unless it is RESTOREd.
Example

:

10 READ X,Y ,Z

20 DATA 2,5,

ERROR: There are only two numbers for the Computer to read. If you mean for Z
to be zero, you must say so.

20 DATA 2,5,0

3. If the bad area is a FOR-NEXT loop, most of the previous possibilities also apply, plus:

b. Do you have a NEXT statement to match the FOR?
Example:

10 FOR A=l TO N

ERROR: Where's the NEXT A?

c. Do you have all the requirements for a loop — a starting point, an ending point, a

variable name, and a STEP size if it's not 1?

Example:

10 A=l TO N

ERROR: Must have a FOR and a NEXT.
d. Did you accidentally nest 2 loops using the same variable in both loops?

Example:

10 FOR X=l TO 5

20 FOR X=l TO 3

30 PRINT X

40 NEXT X

50 NEXT X

ERROR: The nested loops must have different variables.

at*9'A
WOTErTntie^tetMiHiicamma" intae first Hse2# , :

fcan cause a fuH-bJowft program crash, requiring the

Computer to be tarried off, then ori again to clear

the trouble. :':

Some of these FOR-NEXT loop errors won't
cause actual error messages; instead your program
may wind up in endless loops, requiring the Use of

the 'BREAK key.

169

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


e. Does a variable in a loop have the same letter as the loop counter?

Example:

10 A=22

20 FOR R=l TO 5

30 R=18

40 Y=R*A

50 PRINT Y

60 NEXT R

ERROR: The value of R was changed by another R inside the loop, and NEXT R was

overrun, since 18 is larger than 5.

f. Did you nest loops incorrectly with one not completely inside the other?

Example:

10 FOR X=l TO 6

20 FOR Y=l TO 8

30 SET (X,Y)

40 NEXT X

50 NEXT Y

4. If the goofed-up statement is an IF-THEN or GOTO
a. Does the line number specified by the THEN or GOTO really exist? Be especially

careful of this error when you eliminate a line in the process of "improving" or "clean-

ing up" a program.

5. The error comes back as SORRY but the P.M. indicates there is room left in memory:

If you get a SORRY and are using the A(X) numeric array, be sure to check P.M. then

subtract 4 bytes for each array element used. You have probably overrun the amount of

available memory.

6. The error comes back as HOW? and the program line containing the error is printed out

with a question mark buried somewhere inside:

a. Did you exceed the limits of one of the built-in functions?

b. Did one of the values on the line exceed the maximum or minimum size for LEVEL I

numbers?

170

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


c. Did you tell the Computer to divide by zero? (The Computer isn't about to let you get

away with that one!)

To find out whether you did any of these things, PRINT the values for all the variables

used in the offending line. If you still don't see the error, try carrying out the operations

indicated on the line. For example, the error may occur during a multiplication of two
very large numbers.

These certainly aren't all the possible errors one can make, but at least they give you some
idea where to look first. Since we can't completely avoid silly errors, it's necessary to be

able to recover from them as quickly as possible.

By the way ... a one-semester course in beginning typing can do wonders for your program-

ming speed and typing accuracy.

From the Ridiculous to the Sublime:

All the Computer can tell us is that we have (or have not) followed all of its rules. Assuming
we have followed all the rules, the Computer will not ask "WHAT?" or "HOW?" — even

if we're asking it to do something that's quite silly and isn't at all what we intended. It will

dutifully put out garbage all day long if we feed it garbage — even though we follow its

rules. Remember GIGO? If the program has no obvious errors, what might be the matter?

Typical "unreported" errors are:

1. Forgetting to initialize variables (and they are starting out with old values). Remember
you cannot assume that unused variables are zero.

2. Accidentally reinitializing a variable — particularly easy when using loops.

Example:

10 FOR N=l TO 3

20 READ A

30 PRINT A

40 RESTORE

50 NEXT N

60 DATA 1,2,3

3. Reversing conditions, i.e. using "=" when you mean "<$\ or "greater than" when you
mean "less than."

?RiNT :

ifi : caicu^ferme^:(fi mm::"-.-

171

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


4. Accidentally including "equals", as in "less than or equals", when you really mean only

"less than."

5. Confusing similarly named variables, particularly the variable A, the string A$, and the

array A(X). They are not at all related.

6. Forgetting the order of program execution — from left to right on each line, but multi-

plications and divisions always having priority before additions and subtractions. And

intrinsic functions (INT, RND, ABS, etc.) having priority over everything else.

7. Counting incorrectly in loops. FOR 1=9 TO 7 causes the loop to be executed eight, not

seven, times.

8. Using the same variable accidentally in two different places. This is okay if you don't

need the old variable any more, but disastrous if you do. Be especially carefuly when

combining programs or using the special subroutines in Chapter 25.

But how do you spot these errors if the Computer doesn't point them out? Use common

sense and let the TRS-80 help you. The rules to follow are:

1. Isolate the error. Insert temporary "flags." Add STOP, END, and extra PRINT state-

ments until you can track the error down to one or two lines.

2. Make your "tests" as simple as possible. Don't add complications until you've found

the error.

3. Check simple cases by hand to test your logic, but let the Computer do the hard

work. Don't try to wade through complex calculations with pencil and paper. You'll

introduce more new mistakes than you'll find. Use the calculator mode, or a separate

hand calculator to do that work.

4. Remember that you can force the Computer to start running a program at any line

number you choose. Just type RUN #*# (where ### represents the desired line

number). This is a useful tool for working your way back through a program. You give

the variables acceptable values using calculator-mode statements, and then RUN the

program starting from some point midway through the program flow. If the answers

are what you expect, then the error is before the "test point" you've created. Other-

wise, the error is after the test point.

5. Remember also that it's not necessary to list the entire program just to get a look at

one section of it. Just type LIST ### (where ### tells the Computer which line

you'd like to start the list with).

6. Practice "defensive programming." Just because a program "works okay", don't assume

it's dependable. Programs that accept input data and process it can be especially decep-

tive. Make a point of checking a new program at all the critical places. Examples: A

square root program should be checked for inputs less than or equal to zero. Math

functions you have programmed should be checked at points where the function is

undefined, such as TAN{90°).

olusefftl flags:

299 PRINT LIME #'Z.9¥".'

399 IF x.<& THEN ^RINT "XOUI HF RANGE AT #399"; STOP'-

Line 239 will help you\ check whether the line'

immediately following line 299 is executed. This

helps you follow program flow-

Line 399 might be: used to locate the point where X
goes out of range.'

Although the details would be different for your

program, tftesfe techniques can be applied easily.

172

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Beware of Creeping Elegance

Programs can grow to become more and more elegant with the ego reinforcement of the

programmer as success follows success. With this "creeping elegance" comes increased

chance of silly errors. It's fun to let your mind wander and add on some more program here,

and some more there, but it's easy to lose sight of the purpose of the program. It is at times

like this when the flow chart is ignored and the trouble begins. Nuff said.

We'll leave you some space to make notes on your own debugging and troubleshooting

ideas . , .

Learned in Chapter 26

Miscellaneous

Defensive programming

Computer-detected errors

Flags

Hardware checkout

procedures

Share them with as too . . . especially if you eorne
:.«p with some reglly neat ones. -- ; ;

--.*;" "

173

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

174

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

175

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

176

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


PartB:
Answers to Exercises in the Chapters

177

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


PartB:
Sample Answers

SAMPLE ANSWER FOR EXERCISE 3-1

50 PRINT DKIEa
SAMPLE RUN FOR EXERCISE 3-1

3000

Note: You may have used a different line number in your answer but
the way to get the answer printed on the screen is by using the PRINT
statement. If you didn't get it right the first time don't be discouraged.

Type in line 50 above and RUN the program. Then return to Chapter
3 and continue.

SAMPLE ANSWER FOR EXERCISE 3-2

10 REM * TIME SOLUTION KNOWING DISTANCE AND RATE *

20 D = 3000

30 R = 500

40 T = D/R

50 PRINT "THETIME REQUIRED IS"|T; "HOURS."

NOTE: Remember to IJJhJJ:! each line.

SAMPLE RUN FOR 3-2

THE TIME REQUIRED IS 6 HOURS.

Note: In order to arrive at the formula in line 40 it is necessary to

transpose D = R * T and express in terms of T.

178

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR EXERCISE 3-3:

10 REM * CIRCUMFERENCE SOLUTION *

20 P = 3.14

30 D = 35

40 C = P * D

50 PRINT "THE CIRCLE'S CIRCUMFERENCE IS";C; "FEET."

SAMPLE RUN FOR 3-3

THE CIRCLE'S CIRCUMFERENCE IS 109.9 FEET.

Note: Since n is not included in Radio Shack's LEVEL I BASIC, we
have to set a variable (in this case P was used) equal to the value of pi

(3.14)

SAMPLE ANSWER FOR EXERCISE 34:

10 REM * CIRCULAR AREA SOLUTION *

20 P = 3.14

30 R = 5

40A=P*R*R
50 PRINT "THE CIRCLE'S AREA IS'*;A; " SQUARE I NCHES .

"

SAMPLE RUN FOR 34

THE CIRCLE'S AREA IS 78.5 INCHES.

Note: The LEVEL I BASIC system does not have a function which
means "raise to the power" to handle R 2

. (LEVEL II BASIC does.)

In easy cases like this one, we can simply use R times R (R*R). If

you have a LEVEL II system, you'll learn how to use the simple EXPO-
NENTIATION function in the USER'S MANUAL for LEVEL II.

179

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR EXERCISE 3-5:

A bare-minimum effort might look like this: (C = checks, D = deposits,

B = old balance, N = new balance.)

10 B=225

20 C=17+35+225

30 D=40+200

40 N=B-C+D

50 PRINT "YOUR NEW BALANCE IS $";N

SAMPLE ANSWER FOR EXERCISE 4-1

:

10 REM * CAR MILES SOLUTION PROGRAM *

20 N = 1000000

30 D = 10000

40 T = N * D

50 PRINT "THE TOTAL NUMBER DF MILES DRIVEN IS "

SAMPLE RUN FOR 4 1

THE TOTAL NUMBER OF MILES DRIVEN IS 1E+10

Note: As discussed earlier, this answer is the number 1 followed by ten

zeroes. 10,000,000,000. Ten Billion. The Computer will not print any
numbers over 999,999 without converting them to exponential nota-

tion.

^Bj
m(

|
rrm itii«aBBWMiWMjf||

jMaM|aHB^

SAMPLE ANSWER FOR EXERCISE 4-2:

20 N = 1E+6

30 D = 1E+4

180

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE RUN FOR 4-2:

THE TOTAL NUMBER OF MILES DRIVEN IS 1E+10

Note: The answer came out exactly the same as before, meaning we not

only receive answers in SSN, but can also use it in our programs.

SAMPLE ANSWER TO EXERCISE 5-1 :

10 REM * FAHRENHEIT TO CELSIUS CONVERSION *

20 F = 65

30 C = (F - 32) * (5/9 )

40 PRINT Fj "DEGREES FAHRENHEIT =" ;C ; "DEGREES CELSIUS."

SAMPLE RUN FOR 5-1:

65 DEGREES FAHRENHEIT = 18.3333 DEGREES CELSIUS.

Observe carefully how the parentheses were placed. As a general rule,

when in doubt — use parentheses. The worst they can do is slow down
calculating the answer by a few millionths of a second.

SAMPLE ANSWER TO EXERCISE 5-2:

30 C = F-32 * (5/9)

SAMPLE RUN FOR 5-2:

65 DEGREES FAHRENHEIT = 47.222 DEGREES CELSIUS.

Note how silently and dutifully the computer came up with the

WRONG answer. It has done as we directed, and we directed it wrong.

A common phrase in computer circles is GIGO (pronounced "gee-joe").

It stands for "Garbage In — Garbage Out". We have given the computer

garbage and it gave it back to us by way of a wrong answer.

Phrased another way, "Never in the history of mankind has there been

a machine capable of making so many mistakes so rapidly and confi-

dently." A computer is worthless unless it is programmed correctly.

m
181

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER TO EXERCISE 5-3:

3gf c = (F-32)* 5/9

SAMPLE RUN FOR 5-3:

65 DEGREES FAHRENHEIT = 18.3333 DEGREES CELSIUS

SAMPLE ANSWER TO EXERCISE 5-4:

Two possible answers: 30 — (9 — 8) - (7 — 6) = 28

30 - {9 -(8-(7-6)» = 28

Sample Programs:

10 A = 30 - (9 - (8 - (7 - 6)))

20 PRINT A

Or line 10 might be

A = 30 - (9-8)-(7-6)

Try a few on your own.

SAMPLE ANSWER FOR EXERCISE 6-1

:

10 A = 5

20 IF A<>5 THEN 50

30 PRINT "A EQUALS 5

"

40 END

50 PRINT "A DOES NOT EQUAL 5"

SAMPLE RUN FOR 6-1

A EQUALS 5

182

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR EXERCISE 6-2:

10 A = 6

20 IF A <>5 THEN 50

30 PRINT "A EQUALS 5"

40 END

50 PRINT "A DOES NOT EQUAL 5*'

60 IF A<5 THEN 90

70 PRINT "A IS LARGER THAN 5"

80 END

90 PRINT "A IS SMALLER THAN 5"

SAMPLE RUN FOR 6-2:

A DOES NOT EQUAL 5

A IS LARGER THAN 5

Note: We had to put in another END statement (line 80) to keep the

program from running on to line 90 after printing line 70.

SAMPLE ANSWER TO EXERCISE 11-1:

2 INPUT "HOW MANY SECONDS DELAY DO YOU WISH" ;S

3 P = 500

4 D = 5 * P

5 FOR X = 1 TO D

6 NEXT X

7 PRINT "DELAY IS OVER. TOOK" ; S ;
" SECONDS .

"

183

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Explanation:

Line 2 used the input statement to obtain desired delay, S, in seconds.

Line } defined P, the number of passes required for a one-second delay.

Line 4 multiplied the delay for one second times number of seconds desired, and called

that product D.

Line 5 began the FOR-NEXT loop from 1 to whatever is required.

Line 6 is the other half of the loop.

Line 7 reports the delay is over, and prints S, the number of seconds. Obviously, S is only

as accurate as the program itself since it merely copies the value of S you entered in line

2.

SAMPLE ANSWER TO EXERCISE 11-2:

60 PRINT " RATE" , "TIME " , "DISTANCE*

'

65 PRINT ( HPH) It II
( HOURS) ( MILES)

If you honestly had trouble with this one, better go back and start all over because you've

missed the real basics.

SAMPLE ANSWER TO EXERCISE 11-3:

5 CLS

10 PRINT" *** SALARY RATE CHART ***"

20 PRINT

30 PRINT "YEAR " ."MONTH " ,"WEEK "
,
" DAY "

4 PRINT

50 FOR Y=5000 TO 25000 STEP 1000

55 REM*CONVERT YEARLY INCOME INTO MONTHLY*

60 M=Y/12

65 REM*CONVERT YEARLY INCOME INTO WEEKLY*

70 W=Y/52

184

The FOR-NEXT-STEP function is limited to hum*
Mrs betw««n -32767 and +32767 (inclusive). If

'

you specify upper or lower limits or a step size ..;.

outside this range, youli get a HOW? message.

Another not-so-obvious error will result if all your

numbers are within the range but the sum of the

upper limit and the step size exceeds 32767. For
:

-.example, toy ,^
:

.

.

50 FOR Y-5W TO 327W STEP 10#J ;

in the Salary Rate Chart program*

The way around this problem is to use smaller y :

upper and lower limits and step size, and then

use a scale factor in the loop to get the larger.';;
;

;':

number. For example;

':';• 5$ FOR Z-500 TO 3270 STEP 1#
'

53 Y=Z*1Q
: 110 NEXT Z "..', -

:
'

* -

wilt accomplish the same thing.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


75 REM*CONVERT WEEKLY INCOME INTO DAILY*

80 D=W/5

100 PRINT Y , M, W ,D

110 NEXT Y

SAMPLE RUN FOR 11-3:

YEAR

SALARY RATE CHART

MONTH WEEK DAY

5000 41 6 .667 96 . 1538 19 .2308
6000 500 115. 385 23 .0769
7000 583. 333 134 .615 26 .9231

ETC,

SAMPLE ANSWER FOR EXERCISE 114:

10 R = .01

20 D = 1

30 T = .01

35 CLS

40 PRINT "DAY "
, "DAILY " , "TOTAL "

50 PRINT " ft" , "RATE " ."EARNED"

60 PRINT

70 PRINT D.R.T

80 IF R > 1E6 END

90 R = R * 2

185

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


100 D = D + 1

110T=T+R
120 GOTO 70

SAMPLE RUN FOR 114:

DAY
n

DAILY
RATE

TOTAL
EARNED

1

2

3

5

6

1 . 000000E-02
2E-02
4E-02
8E-02
. 16

.32

1 .000000E-02
3E-02
7E-02
. 15
. 31
.63

ETC

SAMPLE ANSWER FOR EXERCISE 11-5:

1 REM * FIND THE LARGEST AREA *

5 CLS

10 PRINT "WIRE FENCE" ."LENGTH" , "WIDTH" ."AREA

20 PRINT " (FEET)" ,

M (FEET)

30 F = 1000

40 FOR L = TO 500 STEP 50

50 W = (F-2*L)/2

60 A = L * W

70 PRINT F.L.W,

A

(FEET) (SQ. FEET)

I
fcfi

186

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


80 NEXT L

90 END

SAMPLE RUN FOR EXERCISE 11-5:

WIRE FENCE LENGTH WIDTH AREA
(FEET) (FEET) (FEET) (SQ.FEET)

1000 500
1000 50 450 22500
1000 100 400 40000
1000 150 350 52500
1000 200 300 60000
1000 250 250 62500
1000 300 200 60000

ETC.

ma""MM" gj r.v.vfi

ADDENDUM TO EXERCISE 11-5:

Here's a program that lets the Computer do the comparing:

5 CLS
9 REM *SET MAXIMUM AREA AT ZERO*
10 M=
14 REM *SET DESIRED LENGTH AT ZERO*
15 N=0
19 REM *F IS TOTAL FEET OF FENCE AVAILABLE*
20 F=1000
24 REM *L IS LENGTH OF ONE SIDE OF RECTANGLE*
25 FOR L = TO 500 STEP 50
29 REM *L IS WIDTH OF ONE SIDE OF RECTANGLE*
30 W=CF-2*L)/2
35 A=W*L
39 REM *COMPARE A WITH CURRENT MAXIMUM. REPLACE IF NECESSARY*
40 IF A<=M THEN GOTO 55
45 M = A

49 REM *ALSD UPDATE CURRENT DESIRED LENGTH*
50 N = L

55 NEXT L

60 PRINT "FOR LARGEST AREA USE THESE DIMENSIONSi"
65 PRINT N; "FT. BY"; 500-N ; "FT. FOR TOTAL AREA OF" jM; " SQ.FT

187

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE RUN FOR ADDENDUM TO EXERCISE 11-5:

FOR LARGEST AREA USE THESE DIMENSIONS:
250 FT. BY 250 FT. FOR TOTAL AREA OF 62500 SQ.FT

SAMPLE ANSWER FOR OPTIONAL EXERCISE 11-6:

10 REM * FINDS OPTIMUM LOAD TO SOURCE MATCH *

20 CLS

30 PRINT "LOAD "
. "CIRCUIT "

, "SOURCE "
, "LOAD "

40 PRINT "RESISTANCE "
, "POWER "

, "POWER "
, "POWER "

50 PRINT " (OHMS)" ," CWATTS)" ," (WATTS)" ." (WATTS)"

60 PRINT

70 FOR R=l TO 20

80 I = 120/C 10 + R

)

90 C = I * I * < 10 + R)

100 S - 1*1*10

110 L - I * I*R

120 PRINT R ,C,S,L

130 NEXT R

SAMPLE RUN FOR EXERCISE 11-6:

LOAD CIRCUIT SOURCE LOAD
RESISTANCE
( OHMS)

1

POWER
{ WATTS)
1309 .09

POWER
(WATTS)
1190.08

POWER
( WATTS)

1 19 .008

2 1200 1000 200
3 1 107.69 852 .071 255.621

ETC.
nrrmrernmn^^

NOTE: Use4 key to stop the display s<> you can

examine it.

188

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR EXERCISE 1 2-1

:

10 PRINT "THE " , "TOTAL " , "SPENT "

20 PRINT "EUDGET YEAR'S THIS"

30 PRINT TAB(0) ; "CATEGORY" ; TAB (16) j "BUDGET" ; TAB (32) ; "MONTH"

SAMPLE ANSWER FOR EXERCISE 12-2:

30 PRINT TAB(1);"YEAR " ; TAB ( 1 2 ) j " MONTH " ; TAB C 2 5 ) ;
" WEEK " ;

40 PRINT TAB( 38)

;

"DAY " ;TABt 51 ) ; "HOUR "

85 REM-CONVERT WEEKLY INCOME INTO HOURLY

90 H=W/40

SAMPLE RUN FOR 12-2:

*** SALARY RATE CHART ***

YEAR MONTH WEEK DAY

5000
6000

416 ,667
500

96 . 1538
115. 385

19.2308
23 .0769

HOUR

2 . 40385
2 . 88462

ETC,

189

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR 12-3:

30 PRINT "INTER "
; TAB ( 1 );" LOAD "

; TAB ( 2 1 ) ? " C I RCU I T "
;

35 PRINT TA8C36) ; "SOURCE "
; TAB ( 5 1 ) ; " LOAD "

40 PRINT "RESIST " ;TAB< 10) ; "RESIST "
; TAB C 2 1 ) i "POWER "

;

45 PRINT TABC36) ; "POWER "
; TAB C 5 1 ) ; " POWER "

50 PRINT " (OHMS)" (TABC10))" (OHMS)" ;TAB(21);" (WATTS)";

55 PRINT TAB(36);" (WATTS)" ;TAB(51);" (WATTS)"

120 PRINT" 10 M ;TAB( 10) ; R ; TAB ( 20) ;C;TAB( 35} ;S;TAB( 50) ;L

SAMPLE RUN FOR EXERCISE 12-3:

INTER LOAD CIRCUIT SOURCE LOAD
RESIST RESIST POWER POWER POWER
(OHMS) (OHMS) ( WATTS) ( WATTS) ( WATTS

)

10 1 1309 .09 1 190. 08 1 19 .008

10 2 1200 1000 200
10 3 1107 .69 852 .071 255.621

ETC

SAMPLE ANSWER FOR EXERCISE 1 3-1

10 FOR A = 1 TO 3

20 PRINT " A LOOP

"

30 FOR B = 1 TO 2

40 PRINT

190

" " ,
" B LOOP"

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


42 FOR C = 1 TO 4

44 PRINT " M
,
" "

,
"

48 NEXT C

50 NEXT B

60 NEXT A

C LOOP

SAMPLE ANSWER FOR EXERCISE 132:

The program will be the same as the answer to Exercise 13-1 with the following additions:

45 FOR D = 1 TO 5

46

47

PRINT

NEXT D

n ii tt if n ii it D LOOP

Note: To get the full impact of this "4-deep" nesting, stop the RUN frequently to examine
the nesting relationships between each of the loops.

SAMPLE ANSWER FOR EXERCISE 14-1:

Addition of the following single line gives a nice clean printout with all values "rounded" to
their integer value:

55 A = INT(A)

Worth all the effort to learn it, wasn't it?

SAMPLE ANSWER FOR EXERCISE 14-2:

55 A = INTC 10 * A)/10

When 3.14159 was multiplied times If) it became 31.4159. The INTEGER value of 31.4159
is 31. 31 divided by 10 is 3.1. Etc.

191

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR EXERCISE 14-3:

This was almost too easy.

55 A = INK 100 *A)/I00

SAMPLE ANSWER FOR EXERCISE 1 4A:

Oh Pshaw! And it seemed so easy.

You should have entered:

55 A = INK 1000 *A)/1000

Oh, you did? And you got 3 answers, then it crashed, saying:

HOW?
55 A = INK 1000 * A)?/1000

It is all correct. Then why doesn't it work?

Well, if you have LEVEL II BASIC it did work. If you can't figure out why it didn't work

with LEVEL I and you don't know why, you forgot to read the NOTE at the beginning of

the lesson. Go back and read it.

OK. 32727 is the largest permissible number inside the brackets of INT(A). When the pro-

gram tried to execute the fourth pass of the loop, it hit INT(1000 * 5(3.2654) etc. which

becomes INT(5(3265.4) which is, of course, too big. So the Computer said HOW? But wait —

there is a way to get the desired result. Try

55A = INT(A) + INK { A- INK A) ) * 1000/1 000

SAMPLE ANSWER FOR EXERCISE 15-1:

10 INPUT " TYPE ANY NUMBER

20 REM * SGN ROUTINE *

22 IF X <0 THEN T = -1

24 IF X = THEN T =

192

;X

Remember: Just becauseLEVELl'BASie'can't

solve a problem one way doesn't mean it can't be,

done. You've jasi got to be a little fancier,

sneakier. . .or whatever. And that's half the fun,

of programming!-: *

.

:

'."' ;'.;"! :^;A
r:
."^:V*"':-'':""V --riV;"-" :' - : '-.-.:..: .: " v..-.'

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


26 IF X >0 THEN T = +1

30 ON T+2 GOTO 50,60,70

4 5 END

50 PRINT " THE NUMBER IS NEGATIVE."

55 END

60 PRINT " THE NUMBER IS ZERO."

65 END

70 PRINT " THE NUMBER IS POSITIVE."

1

SAMPLE ANSWER FOR EXERCISE 1 6-1

:

3 PRINT " SEE MY FOXY " ;

5 FOR N = 1 TO 2

10 READ A$

20 DATA RADIO SHACK, TRS-80

30 PRINT A$; " "
,

40 NEXT N

WKsmammmm

Analysis

:

Line 3 PRINTs the first part, leaving a space for the printing from the upcoming A$, and
has a trailing semicolon so the carriage return is suppressed.

Line 5 establishes a two-pass FOR-NEXT loop.
Line 10 Reads RADIO SHACK
Line 20 contains the two DATA strings, separated by a comma
Line 30 PRINTs RADIO SHACK and a space on the first pass of the N loop. Note the

trailing semi-colon to again suppress the carriage return.
Line 40 returns control to line 5 and the loop. The second pass through the loop PRINTs
TRS-80 (and another space, but it doesn't matter), finishing the job.

193

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR EXERCISE 20-1

:

10 INPUT " STARTING HORIZONTAL BLOCK (0 TO 127) " ;H

20 INPUT *' ENDING HORIZONTAL BLOCK (0 TO 127)" ;I

30 INPUT " STARTING VERTICAL BLOCK (0 TO 47)" ;V

40 INPUT " ENDING VERTICAL BLOCK C0 TO 47)*' ;W

50 CLS

60 FOR X = H TO I

70 FOR Y = V TO W

80 SET(X.Y)

90 NEXT Y

100 NEXT X

999 GOTO 999

SAMPLE ANSWER FOR EXERCISE 20-2:

The following lines are changed. The rest are the same.

50 FOR L = X TO X+K*2+l

70 SETtL, Y+K+l

)

90 FOR M = Y TO Y+K+l

110 SET(X+K*2+1 ,M)

wmmmmmmmmmemmmmgmmsmmammmsamgsn
SAMPLE ANSWER FOR EXERCISE 20-3:

A. MOVE THE DOT UP

10 INPUT "HORIZONTAL STARTING POINT (0 TO 127)'* ;X

194

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


20 INPUT "VERTICAL STARTING POINT <0 TO 47) , *

{ Y

30 CLS

40 RESET (X.Y+1)

50 SET(X.Y)

60 Y = Y-l

70 IF Y> =0 THEN 40

80 Y = Y+48

90 GOTO 40

99 GOTO 99

B. MO VE THE DOT TO THE LEFT

10 INPUT " HORIZONTAL STARTING POINTC0 TO 127)'* ;X

20 INPUT "VERTICAL STARTING POINT (0 TO 47)" jY

30 CLS

40 RESET (X+l ,Y)

50 SET (X,Y)

60 X = X-l

70 OF X>=(g THEN 40

80 X = X+128

90 GOTO 40

999 GOTD 999

SAMPLE ANSWER FOR EXERCISE 21-1

Add or change the following lines

:

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


10 IN. "WHICH CAR' S ENGINE, COLOR t STYLE DO YOU WANT TO KNOW";W

130 FOR B = 201 TO 210

135 READ ACB)

140 NEXT B

180 P. "LICENSE #", "ENGINE SIZE", "COLOR CODE", "BODY STYLE

210 P. W,A( W) ,A< W+100) ,A(W+200)

400 DATA 20,20,10,20,30,20,30,10,20,20

SAMPLE ANSWER FOR EXERCISE 22-1

:

Insert the following lines:

105 IF Y=46 THEN 180

115 IF Y=l THEN 180

150 PRINT AT Y*64+32," "

160 G.90

*i^tv^^'ii>ujin ^n i\iu^ iHiiHi *i IN w j'^m <'.u* i

i mii>i>MnjrTirriiifTr^T~iTTTnT; n"vr

180 PRINT AT Y*64+32, "PING "

190 G.90

Note that line 180 prints the "ping" and line 150 makes it disappear by printing blanks in

its place.

196

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


SAMPLE ANSWER FOR EXERCISE 234:

10 REM * TEST GRADER *

20 CLS

30 P. "THIS IS A TEST GRADING PROGRAM"

40 P. "ENTER THE STUDENT'S FIVE ANSWERS AS REQUESTED"

50 RESTORE

60 N=0

70 FOR 1=1 TO 5

80 PRINT "ANSWER NUMBER" ;I;

90 INPUT A

100 READ B

110 PRINT A,B;

120 IF A=B THEN PRINT " CORRECT ";: N=N+

1

130 PRINT

140 NEXT I

150 PRINT N; "RIGHT OUT OF 5"
;

160 PRINT N/5 *100;"% "

170 P. "ANY MORE TESTS TO GRADE" ;

180 IN." — 1=YES, 2=NO" jZ

190 IF Z=l GOTO 50

200 DATA 65,23,17,56,39

SAMPLE ANSWER FOR EXERCISE 23-2:

10 REM * SAMPLE ANSWER 23-2*

197

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


100 CLS

1 10 P . sP.

120 P. "ENTER THE NUMBER OF ONE OF THE FOLLOWING INVESTMENTS"

130 P.

140 P." 1 - CERTIFICATE OF DEPOSIT"

150 P." 2 - BANK SAVINGS ACCOUNT"

160 P." 3 - CREDIT UNION"

170 p." 4 - MORTGAGE LOAN"

180 P.:IN." INVESTMENT" (F

190 ON F GOTO 1000,2000,3000,4000

200 GOTO 100: REM USED IF NUMBER NOT BETWEEN 1 AND 4

1000 REM * CERTIFICATE OF DEPOSIT PROGRAM GOES HERE *

1010 P. "THE CD. PROGRAM HAS YET TO BE WRITTEN."

1020 GOS . 10000 : G . 100

2000 REM * BANK SAVINGS ACCOUNT PROGRAM *

2010 CLS:P. iP. "THIS ROUTINE CALCULATES SIMPLE INTEREST ON"

2020 P." DOLLARS HELD IN DEPOSIT FOR A SPECIFIED PERIOD"

2030 P."USINGA SPECIFIED PERCENTAGE OF INTEREST .". P

.

2040 P. J IN. "HOW LARGE IS THE DEPOSIT (IN DOLLARS)" jP

2050 IN. "HOW LONG WILL YOU LEAVE IT IN (IN DAYS)" ;D

2060 IN. "WHAT INTEREST RATE DO YOU EXPECT (IN X) " ;R

2070 CLSsP. :P. iP. "FOR A STARTING PRINCIPAL OF S" ;P;"AT A"

198

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


2080 P. "RATE OF " ;R;" % FOR » ,D," DAYS, THE INTEREST

2090 P."AMOUNTS TO $ "
;

2100 REM INTEREST = < % / YR ) / (DAYS/YR) * DAYS * PRINCIPAL

2200 I = R/100 / 365 * D * P

2300 P.tP." " ,
" $ "

, I

2400 END

3000 REM * CREDIT UNION PROGRAM GOES HERE *

3010 P."THEC.U. PROGRAM HAS YET TO BE WRITTEN."

3020 GOS. 10000 s G. 100

4000 REM * MORTGAGE LOAN PROGRAM GOES HERE*

4010 P." THE M.L. PROGRAM HAS YET TO BE WRITTEN."

4020 GOS . 10000 : G . 100

10000 F. I=lTO2000sN. I :RET.

SAMPLE ANSWER TO EXERCISE 24-1

Changes in only two lines are required:

60 IF CA=1) + (B=l) + <c=l) THEN 100

100 P. "A GATE IS OPEN. OLD BESSIE IS FREE TO WANDER."

Line 60 reads "If gate A is open OR gate B is open OR gate C is open, then GOTO 100."

SAMPLE ANSWER TO EXERCISE 24-2:

40 IF ((INT (X/16) * 16-XlOB) * ((INT ( Y/6 ) * 6-Y)O0)THEN 601

Here's one way to create uniform boundaries:

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


20 FOR X = 1 TO 126

30 FOR Y = 1 TO 46

SAMPLE ANSWER FOR EXERCISE 25-1

:

10 INPUT "DISTANCE FROM TREE";D

20 INPUT "HEIGHT OF TREE YOU'RE SEEKING" ;H

30 X=H/D:GOSUB 30660

40 PRINT "REQUIRED ANGLE IS" ;C; "DEGREES. "

SAMPLE ANSWER FOR EXERCISE 25-2:

1 CLS

10 FOR A=0 TO 360

20 X=A:GOSUB 30370

30 Y=~Y*20

40 SET( A/3, Y+22)

50 NEXT A

60 GOTO 1

200

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


PartC:
Some User's Programs

"USE ME-BUT BE GENTLE."

201

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


PartC:
Some User's Programs

mmsmmmsffla^mmmmmmmmmmMmmmmmmmm

Test Grader Program
10 REM * TEST GRADER *

ze cls

30 A=l

40 B=a

50 C = 3

60 D = 4

72 E = 5

se t=ib

90 F=ll

100 N=la

110 P. "WOULD YOU LIKE TO INPUT THE ANSWERS"

120 P. "ONE AT A TIME OR 5 AT A TIME (ENTER 1 OR 51"; iIN.T

1 30 IF (T=l ] + ( T=5 ) GOTO 150

140 GOTO 120

150 IN. "ENTER THE STUDENT'S NAME (LAST NAME, FIRST NAME)"jAS. BJ

160 CLS; p. "TEST FOR ";BS;" " |AS

1?0 REST,

190 R=0

190 FOR 1=1 TO N STEP T

220 P. "ENTER ANSWER" | i IF T=5 P. "S "
I I ; "THROUGH "

t

ZIB P. I+T-l|

2 20 IF T = 5 IN. At I), A< 1 + 1), At 1 + 2), At 1+3), M 1 + 4) iG. 240

2 30 IN. A(I)

202

240 NEXT I

250 CLS

260 P," RESULTS ON TEST FROM " iBt|" " [A*j" i'

270 FOR 1=1 TO N

280 P . At 1 ) t

290 READ 2

300 P,Z,

310 IF A(I)=Z P. "CORRECT "| j R=R+1

320 P,

330 NEXT I

340 P. "PERCENTAGE CORRECT:" ) I NT [ R/N*

1

00+ . 5

)

350 P.

360 G.150

370 DATA 5, 3,

A

, D , C , E

.

T ,
T , F ,

T

mm

Slowpoke

The kiddies (of all ages) will enjoy this one. It tests reaction time. When the com-
puter says "G", you press any key to stop it. Then it's the next player's turn to

RUN it. The player who stops it on the smallest number wins. Any player who gets

a "SLOWPOKE" has to go take the dog for a walk.

With a little easy rework of the PRINT statements it can be converted into a

"drunkometer" reaction time tester.

To change the speed of the printing, you can add a short FOR-NEXT loop between
190 and 200.

10 PRINT " GET READY . . ,

20 POR B = 1 TO 500

30 NEXT B

40 PRINT

50 PRINT

60 PRINT

70 PRINT TABOO) , "GET SET

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


ee x = RND(isaa)

90 FOR N = 1 TO X

102 NEXT N

110 CLS

120 PRINT

130 PRINT

140 PRINT

150 PRINT

160 PRINT

1T0 PRINT TABI30) , " G

180 FOR Z = 1 TO 10

190 PRINT Z

200 NEXT Z

£10 PRINT

220 PRINT

230 PRINT

240 PRINT " SLOWPOKE'
250 FOR N = 1 TO 1000

260 NEXT N

+ r i •

12-Hour Clock
10 IN. "THE HOUR IS" (E

20 F=INT<E/10) |E=E-(F*10)

30 IN. "THE MINUTES ARE"tC

40 D=INT(C/10) iC=C-(D*10)

50 IN. "THE SECONDS ARE";A

60 B=INT(A/10) >A=A-£B*10>

70 F .N=l TO 500 i N .

N

80 A=A+1

90 IF A>9 G. 1 10

100 G.300

110 A=0

120 a=B+i

130 IF B>5 G. 150

140 G.300

150 B=0

160 C=C+1

170 IF C>9 G.190

180 G.300

190 C=0

200 C=D+1

210 IF D>5 G . 230

220 G.300

230 0=0

240 £=E+1

250 IF E>9 G.270

260 G.290

270 E=0

280 F=F+1

290 IF (F=1)*[E=3)A=0;B=0:C=0 iD=0 :E=1 iF=0

300 CLS

310 P. AT 470,F{Ei " i" ;DtCi" |" tB)A

320 G.70

Checksum For Business

For those responsible for inventory numbers or check clearing and balancing in

business, a checksum is a most useful testing "code". This simple program calcu-

lates error-free checksums almost instantly. It is designed for 6-digit numbers and

so can be used for stock number verification or other applications.

203

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


a PRINT

9 REM * CHECKSUM PROGRAM *

10 IN. " THE FIRST DIGIT IS "
t A

30 IN." THE SECOND DIGIT 15 " iB

50 IN. " THE THIRD DIGIT IS " iC

70 IN." THE FOURTH DIGIT IS " )D

90 IN. " THE FIFTH DIGIT IS " ;E

110 IN." THE SIXTH DIGIT IS " ;F

160 P.

170 P." THE NUMBER IS "
i A i B ;

C

t D t E i F

,

180 S = A + 2*B + C + 2*D + E + 2*F

210 T = INTI S/10>

220 U = S - T* 10

230 S = T + U

240 IF S>9 G.210

290 P." THE CHECKDIGIT IS "
; S

Figure 1

Design Program For

Cubical Quad Antenna

The cubical quad is an exceptionally fine antenna for use in receiving and trans-

mitting ham, citizens band, short wave broadcasting, industrial, public service radio

and television signals. It is rotatable, being well-balanced and lightweight, even

when not raised very far off the ground.

Electrically, it consists of two loops of wire, one of which is fed with coaxial cable

or twin lead, the other simply soldered together at its ends. Figure 1 is an illustra-

tion of a quad.

The program inputs only your desired operating frequency. It then calculates and

outputs all the mechanical dimensions needed so you can construct your own

quad. Happy designing!

s CLS

B P." CUSTOM DESIGNING YOUR OWN HIGH GAIN ANTENNA >>—>>"

9 P.

IS IN." CENTER FREQUENCY (IN MEGAHERTZ) = " |F

20 CLS

25 P. " > > CUBICAL QUAD ANTENNA < <"

30 P.

40 E=.985 * F

50 G=1.033 * F

60 D=1000/F

100 R=1032/F

140 B=lie/F

180 X=(2*{R*R/64)

)

190 GOSUB 10000

195 S=Y

200 X=(S*S + <B*B/4))

210 GOSUB 10000

215 P=Y

220 X = (<R*R/64) + 75 * 75/(F*F*41)

230 GOSUB 10900

2 35 T=Y

240 X = <<R*R/64> + 125*125/(F*F*4)

}

242 GOSUB 10000

245 U=Y

260 W=468/F

520 P." THE DESIGN CENTER FREQUENCY IS" |Fi" MHZ.

204

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


525 P. "THIS 2 ELEMENT QUAD SHOULD EXHIBIT A STANDING WAVE RATIO"

530 P."OF2il OR LESS OVER THE FREQUENCY RANGE FROM";Et"T0"

535 P.G|" MHZ WHEN USED WITH 50 TO 75 DHM FEED LINE."

540 P.

570 P. "THE BOOM LENGTH CAN VARY BETWEEN "; 75/F j "FEET AND"

575 P. 125/F |
" FEET WITH LITTLE EFFECT. A LENGTH OF" t B

580 P. "FEET IS OPTIMUM."

590 P.

620 P." TOTAL LENGTH OF THE WIRE IN THE DRIVEN ELEMENT IS" :D

625 P. "FEET, WHICH COMES TO" ;0/4["FEET ON EACH SIDE."

630 P.

640 P. T. (20), "PRESS ENTER TO CONTINUE "
i : IN. AS

650 CLS

660 P." TOTAL LENGTH OF WIRE IN THE REFLECTION ELEMENT IS" [R

665 P. " FEET. WHICH IS" jR/4 ;
" FEET ON EACH SIDE."

670 P.

690 P." THE MINIMUM LENGTH OF BAMBOO. FIBERGLASS

OR OTHER"

695 P. " WILL BE "
; Si "FEET, MEASURED FROM THE CENTER OT THE"

697 P." BOOM. IF A SPIDER (BOOMLESS) QUAD MOUNT IS USED,"

700 P. "EACH SPREADER WILL HAVE TO BE AT LEAST" jP, "FEET."

730 P.

740 P." THE TURNING RADIUS (FOR TREE CLEARANCE. ETC)

WILL VARY"

745 P." BETWEEN" iTi" FEET AND"
( Ui" FEET, DEPENDING

ON THE LENGTH"

750 P. " OF THE BOOM. "

755 P.

760 P. T. (20), "PRESS ENTER TO CONTINUE":: IN. AS

770

790

795

800

810

840

845

855

860

880

9999

10000

10010

10020

10030

10040

10050

10060

10070

10080

10090

10 100

CLS

P." THIS QUAD ANTENNA WILL WORK WELL EVEN AT

LOW HEIGHTS"

P." ABOVE THE GROUND, BUT IT WORKS BEST WHEN UP IN THE AIR 1

P. " A HALF-WAVELENGTH " ,W| " FEET, OR MORE. "

P.

P," THE FRONT-TO-BACK RATIO (ABILITY TO REDUCE

UNWANTED"

P." SIGNALS FROM THE OPPOSITE DIRECTION) SHOULD

EXCEED 10"

P . " DECIBELS FROM ABOUT " i.97*F t "To" jl,03*F|

" MEGAHERTZ, "

P. " APPROACHING 25 DB AT" |F: " MEGAHERTZ. "

P .

" * * * * GOODDX * * * * * i>

END

REM * SQUARE ROOT SUBROUTINE *

IF X >= GOTO 10040

P." NO SUCH THING AS SQUARE ROOT OF NEGATIVE NUMBER"

END

Y=X/2

Z =

W=( X/Y - Y)^2

IF W=0 RET.

IF W=Z RET.

Y=Y+W : Z = W

GOTO 10060

205

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Speed Reading
Your Computer is your own personal Tachistoscope, a device used to practice speed

reading. Study this sample program carefully to see how easy it is for you to sub-

stitute your own reading material at whatever reading level you want. The variable

time loop lets you input the desired reading speed in words-per-minute.

3 HEM * SPEED READING PROGRAM *

4 G. 10

5 F.I=1 TO B1N.I1PRINT AT 448iiRET.

6 REM AUDIO PROMPT GOES BEFORE RETURN IN ABOVE LINE.

10 I." HOW MANY WORDS PER MINUTE DO YOU READ" tW

20 B={ 12*60/W) * 500

30 REM S00=FOR/NEXT LOOPS IN ONE SECOND

40 CL5

50 P.AT448)

100 P." SCARLETT O'HARA WAS NOT BEAUTIFUL, BUT MEN SELDOM

" iGOS.5

102 P." REALIZED IT WHEN CAUGHT BY HER OWN CHARM AS THE TARLETON

" iGOS.5

104 P." TWINS WERE. IN HER FACE WERE TOO SHARPLY BLENDED THE

" iGOS.5

106 P." DELICATE FEATURES OF HER MOTHER, A COAST ARISTOCRAT OF

" iGOS.5

108 P. "FRENCH DESCENT, AND THE HEAVY ONES OF HER FLORID IRISH

" :GOS.5

110 P. "FATHER. BUT IT WAS AN ARRESTING FACE, POINTED OF CHIN,

" iGOS.5

112 P." SQUARE OF JAW. HER EYES WERE PALE GREEN WITHOUT A TOUCH

" iGOS.5

11* P." OF HAZEL. STARRED WITH BRISTLY BLACK LASHES AND SLIGHTLY

" tGOS.5

206

116 P." TILTED AT THE ENDS. ABOVE THEM, HER THICK BLACK BROWS

" iGOS.5

118 P." SLANTED UPWARDS, CUTTING A STARTLING OBLIQUE LINE IN HER

" :GOS.5

120 P." MAGNOLIA-WHITE SKIN--THAT SKIN SO PRIZED BY SOUTHERN

" iGOS.5

122 P." WOMEN AND SO CAREFULLY GUARDED WITH BONNETS, VEILS, AND

" iGOS.5

124 P." MITTENS AGAINST HOT GEORGIA SUNS,

" ;GOS.S

The Wheel Of Fortune
(Or . , . Never Give a Sucker an Even Break.)

Modeled after the large wheels of fortune found at carnivals and other such gather-

ings, this graphics program accurately replicates its odds. The numbers are read

from a DATA bank and "rotated" through "windows" as the wheel is "spun".

As commonly played, a SI bet on any number, 1, 2, 5, 10, 20 or 40 (the Joker

and TRS-80) returns those amounts - if that number comes up. If not - it's a

cheap education.

Step right up, stranger. Try your luck at the wheel of fortune.

10 REM * WHEEL OF FORTUNE *

1

1

CLSi J=13 tT=80

13 P." STEP RIGHT UP, STRANGER, TRY YOUR HAND AT THE" :P.iP.

IS P> » WHEEL OF FORTUNE" :P.tP.

17 p, "PAYOFFS IN DOLLARS FOR II BET ARE 1, 2, 5, 10, 20."

19 p, ,p, " SPECIALS ARE THE JOKER AND TRS-80, EACH PAYING 40."

22 P. :P. "ENTER YOUR CHOICE AS 1,2,5,10,20, JOKER, OR TRS-80." I

23 IN.G

24 IF(G=1)+(G=2)+(G=5)+(G=10)+(G=20)+(G=13)+(C=80)G.40

26 P.AT640S

30P. "PLEASE ENTER A 1, 2, 5, 10, 20, JOKER, OR TRS-B0." f;G.23

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


40 REM

50 CLSiP ,AT24 ," WHEEL OF FORTUNE"

60 T=6S

65 P=RND(54)

70 REST.

71 FOR 1 = 1 TO 54

72 READ A( I

)

73 NEXT I

80 REST.

81 FOR 1=55 TD 60

82 READ At I >

B3 NEXT I

100 X=0 i Y=13 :GOS. 3000

110 X=18 t Y=12 iGQS.3000

120 X = 36 i Y=9 iGOS. 3000

130 X=56 :Y=6iGOS.3000

140 X=76 ; Y=9 >GOS. 3000

150 X = 94 i Y= 12 :GDS. 3000

160 X=I12:Y=]6>GOS.3000

170 P.AT92," >> >>" ;

190 P.AT594," ROUND & ROUND IT GOES . . . " t

195 P.AT729," JOKER (13) £.
"

196 P.AT794,"TRS-80 (80)"

193 P . AT856 , " BOTH PAY 40 TD 1"

200 FOR S=l TO 100 + RNDI2)

210 P.AT450,ArP);:P.AT331,A[P+I);:P.AT2 76,A(P+2);

215 P. AT22Z , A{P+3)

i

220 P,AT296,A(P+ih )
i
:P.AT369,A(P+5);:P.AT506,A{P+6)i

221 IFS<TG. E35

224 R=( S-T) *( S-T) *(S-T >/T

226 IFS<98P . AT594 , " PAYOFFS GO TO THE " :G.230

227 P.AT594," ALMOST THERE - . . " .

230 IF S<102 FDR Z= 1 TO R;NEXT Z

Z3S P=P-1

236 IF P=0 P=54

240 N. SiP.TAB( 29) , iQ=A(P+4) iGOS. 2000 iX=0

2 50 P , TAB( 22 ) i
" YOUR C HO ICE WAS "

i: Q=G iGOS . 2 000

260 P.TAB!23)i:IFG=A(P+4)P." YOU WIN AT " |D| " TO 1 " iE.

270 P." YOU LOSE. " :E.

500 D. 1,2, 80 ,1, 5,1, 2, 1,10, 1,2, 1,5, 1.2, 1,5, l.Z, I, £0,1, 2, 10

510 D. 1,2, 1,5, 1,2, I, 5, 1,2, 13, 1,2, 1,10, 1,2, 1,2

520 D. 1 , 20, 1 ,2,5, 1 ,2 , 10, 1 , 2,5

2000 = Q : IFtOOl 3) *(Q<>8» )P. " " ;Q:RET,

2010 0=40 i AS= "JOKER " :IFQ=80 AJ=TRS-80

2020 P .AS; RET

.

3000 FOR 1=0 TO 7

3010 S. t X, I+Y) iS. (X+l , I + Y)

3015 5,{X+14.I+Y)>S.(X+15,I+Y)

3020 S.(I*2+X,Y);S.(I*2+1+X.Y)

30 25 S. ( I*2+X,7+Y) ;S. C I*2+l+X,7+Y)

3030 NEXT I

3040 RET.

Dow-Jones Industrial

Average Forecaster

There is no guarantee that this program will make you instantly wealthy, but it is

an example of converting a financial magazine article into a useable computer

program. The article describing the market premises on which this program is built

appeared on Page 90 of Forbes, June 1, 1977,

207

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


10 REM * FROM FORBES 6/1/77, P. 90. ARTICLE BY BROWN *

20 P." ***PRQJECTS TARGET DOW-JONES INDUSTRIAL AVERAGE AS A"

30 P. " FUNCTION OF YEARS DJI EARNINGS AND INFLATION RATE*** "

40 P.

50 REM * K = COST OF MONEY. ASSUME 3* *

60 K=.03

70 REM * P = RISK PREMIUM OF STOCKS OVER BONDS. ASSUME 1* *

80 P=,01

85 Y=I

86 N=0

90 P, "DO YOU KNOW YEARS PROJECTED EARNINGS OF 30 DJI ( Y/N )
"

[

102 INPUT A

110 IF A = 1 THEN 270

120 P.

130 P." THIS METHOD WILL GIVE AN EARNINGS APPROXIMATION USING"

140 P." THE NEWSPAPER PRICES AND P/E RATIOS. BETTER FORECASTS"

14S P . " OF EACH COMPANY'S EARNINGS MAY GIVE AN IMPROVED"

150 P." OVERALL FORECAST."

160 P.

170 D=0

175 FOR N = 1 TO 30

180 READ At

Zee P. " WHAT IS THE CURRENT PRICE OF >--> " ;A* ;
" <—<"

;

210 INPUT P

220 P." THE CURRENT P/E RATIO" [

230 INPUT R

240 E=P/R

£50 D=E+D

260 N.N

265 P.

208

266 G.310

270 P." WHAT IS THE TOTAL PROJECTED EARNINGS FOR 1 SHARE OF"
|

280 P .
" EACH " ;

285 INPUT D

290 REM * I = ESTIMATED INFLATION RATE *

310 P." WHAT PERCENTAGE IS THE INFLATION RATE" [

320 INPUT I

330 T = D/IK+P+I* .01

)

340 R=T/D

350 P,

360 P , " I NFL . RATE "
,
" DJI EARN .

"
,
" PRO J D J AVG "

,
" AVG/EARN RATIO "

370 P.

380 P. I ,D,T,R

390 D. ALLIED CHEM, ALCOA, AMER BRANDS, AMER CAN, A.T.&T

400 O, BETH STEEL, CHRYSLER, DUPONT, E. KODAK , ESMARK, EXXON

410 D.G.E.. GEN FOODS, GEN MOTORS, GOODYEAR, INCO

420 D.INT. HARV., INT. PAPER, JOHNS-MAN, MINN MM, OWENS-ILLS

430 D.PROCTER t G., SEARS, STD OIL CAL , TEXACO, UNION CARBIDE

440 D.U.S. STEEL, UNITED TECHNOL. , WEST I NGHOU5E , WOOL WORTH

On A Snowy Evening . . .

by Robert Frost

Who says computers only make stuffy mathematical calculations and are not for

folks who appreciate the better things. If this one doesn't grab you, nothing will.

40 CLS

50 P,AT7," ON A SNOWY EVENING ..

55 F.N=1TO2000:N.N

68 F .Z=1TO300

.BY ROBERT FROST"

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


70 SET(RND[ 127) ,RND(47) )

72 N. Z

30 1=0

1000 P.AT525, "WHOSE WOODS THESE ARE I THINK I KNOW."
i

1001 GDSUB6000

1100 P.AT525,"HIS HOUSE IS IN THE VILLAGE, THOUGH" ;

1 101 GOSUB6000

1200 P.AT525," HE WILL NOT SEE ME STOPPING HERE " S

1201 GOSUE6000

1300 P.AT525," TO WATCH HIS WOODS FILL UP WITH SNOW" j

1301 GOSUB6000

1*00 P.AT525,"MY LITTLE HORSE MUST THINK IT QUEER "
j

1*01 GOSUB6000

1500 P.AT525, " TO STOP WITHOUT A FARMHOUSE NEAR "
;

1501 GOSUB6000

1600 P . AT525 ,
" BETWEEN THE WOODS AND FROZEN LAKE "

|

1601 GDSUB6000

1700 P.AT525,"THE DARKEST EVENING OF THE YEAR. " i

1701 GDSUB6000

1600 P.AT525," HE GIVES HIS HARNESS BELLS A SHAKE " ;

1801 GOSUB6000

1900 P.AT525," TO ASK IF THERE IS SOME MISTAKE."
i

1901 GOSUB6000

2000 P. AT525 , " THE ONLY OTHER SOUND'S THE SWEEP";

2001 GOSUB6000

2100 P.AT525,"OF EASY WIND AND DOWNYFLAKE. "
;

2101 GOSUB6000

2200 P.ATS25,"THE WOODS ARE LOVELY, DARK AND DEEP" ;

2201 GOSUB6000

2300 P.AT5S9," BUT I HAVE PROMISES TO KEEP."
,

2305 1=3

2310 GDSUB6000

2*00 P.AT6S3,"AND MILES TO GO BEFORE I SLEEP." |

2405 1=6

2*10 GOSUB6000

2500 P,AT717,"AND MILES TO GO BEFORE I SLEEP," ;

2505 1=9

2510 GOSUB6000

5000 SET(RND( 1 27) ,RND(47 ) )

5001 G.5000

6000 F.N=1TO20

6020 X=RND! 127

)

6030 Y=RND{ *7

)

6070 IF Y = 2*+IG.6020

6080 IF Y = 25+1 G.6020

6090 IF Y = 26+1 G.6020

6100 SET( X, Y)

6150 F, A=lTD20iN. A

6 2 00 N.N

6300 RETURN

Termites
A malicious sense of humor helps on this one. Its avowed purpose is to demon-
strate the graphic RESET (X, Y) function, turning off the "lights" in a random
fashion, but it's not without other redeeming value. If you don't like to sit by
the fire and watch it snow while reading good poetry, you can always watch the

termites eat your house down.

40 CLS

50 F .X=1T0127

60 F.Y=3T047

100 SET(X, Y)

120 N.YtN.X

209

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


170 N=5715

180 P." SEE THE TERMITES EAT.

185 P.AT4S," BITES LEFT!")

200 X=RND< 127)

220 Y=RND<45) + 2

300 IF POINT( X , Y >=0 G.200

500 RESET(X.Y)

550 N=N-1

600 P.AT36.Nj

700 IF N=0 G.999

800 G.200

999 G.999

ONLY"

i

Sorry

SORRY is a popular board game by Parker Brothers. This program demonstrates

how to load a deck of cards into a numerical array, draw them out in a random

fashion, "reshuffle" the deck after the last card is drawn, and continue drawing.

You may specify how many seconds delay you wish between each drawing of the

cards, allowing as much time as desired to actually move the pieces on your own
SORRY board. Have fun!

10 REM * RANDOM GENERATOR FOR GAME OF SORRY *

11 IN. "ENTER A NUMBER FROM 1 TO 100" |N

12 F. 1=1 TO Ni J=RND< 32767) iN .

I

15 CLS

20 P." STAND BY FOR THE SHUFFLING OF THE DECK OF CARDS.

21 P .

22 P.

30 P.

40 FOR N=l TO 45

50 READ A{N)

60 NEXT N

66 P.lP.iP.

70 Y=l

75 P. " SHUFFLING COMPLETED , . . GAME CONTINUES!"

80 B =

90 GDTG 110

100 S=35

1 1 R=INT( RNDI 45 ) )

120 M=A(R

)

130 IF M=0 GOTO 1 1

140 A(R) =

150 T=0

160 FOR Z=l TO 45

170 T=A<Z) + T

180 NEXT Z

185 P. T. (27), "PRESS ENTER "
f t IN. A

I

190 IF T=0 GOTO210

200 GOTO 240

210 P . " END OF DECK. THE CARDS ARE BEING RESHUFFLED."

220 RESTORE

230 GOTO 30

240 IF Y < G.270

2 50 P . TAB ( 10 )

! " RED

"

260 GOTO 280

£70 P. TAB(40);" GREEN"

280 IF M = 13 GOTO 300

290 P . TAB(B+1 5) |M

300 ON M GOTO 3 20 , 3 4 , 59 , 3 8 , 590 , 590 , 4 00 , 59 , 5 9 , 4 30 , 4 50 , 59 , 4 7

310 GOTO 590

320 P.TAB(B)i"MAY MOVE A NEW PIECE OUT"

330 GDTD 590

3*0 P.TAB(B);" MAY MOVE A NEW PIECE OUT"

345 P. i P

.

350 P. TAB<B+5)i"DRAW AGAIN . . . - "

210

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


360 P.

370 GOTO 630

360 P. TAB(B> i

" MUST BACK UP 4 SPACES"

390 GOTO 590

400 P.TAB(B);" MAY SPLIT THE 7 BETWEEN "

410 P.TAB<S+3)|" Z PIECES"

•120 GOTO 590

430 P . TAB C B ) ;
" MA Y MOVE BACKWARDS 1 SPACE"

440 GOTO 590

4S0 P. TAB(B)j"CAN SWAP PIECES WITH OPPONENT"

460 GOTO 590

470 P.

480 P.

490 IF B=0 GOTO 550

500 P. " GOTCHA <« <« <« <«" t

510 P.TAB(49>," SORRY !"

52 P.

530 P.

540 GOTO 590

550 P. "SORRY! >>> >» >» >>> "
;

560 P. TAB ( 55 ) [
" GOTCHA !

"

570 P.

5S0 P .

590 FOR X=1T04

600 P. TAB! 30) ,
" * "

610 NEXT X

620 Y=Y* [ -I }

630 IF Y>0 THEN 80

640 GOTO 100

650 D. 1,1, 1,1. 1,2, 2, 2,2, 3, 3, 3, 3, 4, 4, 4. 4, 5. 5. 5. 5. 7,7, 7, 7, 3, 8

660 0,8,8.10,10,10,10,11,11,11,11,12,12,12,12,13.13,13,13

Automatic Ticket

Number Drawer
like to make a big splash at the next Rotary Club, Country Fair, or other ticket

drawing giveaway? This program uses the random number generator to pick the

lucky number(s) and eliminate charges of stuffing the ticket box, besides giving the

whole affair some pizzaz. If your own number comes up and you are charged with

rigging the computer, you're on your own.

3 IN. "ENTER A NUMBER FROM 1 TO 100" |N

4 F.I = 1 TD N: J=RND ( 32 76 7 ) : N . I

.

5 CLS

10 REM * PICKS WINNER(S) BY DRAWING TICKET NUMBER *

11 REM * NO MORE THAN 3Z767 TICKETS CAN BE SOLD *

12 REM * BUT TICKET NUMBERS CAN RANGE TO 999999 £ BEYOND *

40 IN. "THE LOWEST TICKET NUMBER IS" |B

50 P.

70 IN. "THE HIGHEST TICKET NUMBER IS " ;

H

80 P.

90 E=H-B+1

91 IF E<32768 G. 1 10

100 P. " TOO MANY TICKETS SOLD!" i END

110 IN." HOW MANY WINNERS DO YOU WANT " |W

120 CLS

130 IF W > E G.269

140 P .

141 P .

142 P .

143 P.

1B0 P." * AND THE WINNING "j

182 IF W > 1 G. 185

183 P." TICKET 15+ "

211

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


184 G . 200

IBS P. "TICKETS ARE *"

200 P.

205 A(0) =

210 FOR N = 1 TO W

222 Z = RND(E)

260 P.

£62 P.TAB(12)|" > »> " : 2 + B - 1

264 NEXT N

266 END

269 CL5iP.rP.iP. rP.rP, :P.sP.

270 P.TAB{8) I
" YOU CAN'T HAVE MORE WINNERS THAN"

272 P. "ENTRIES - DUMMY !"

Craps

The game is as old as history. A testimonial to the intelligence and ingenuity of our

ancient ancestors. An excellent way to demonstrate the running of twin Random
NumberGenerators.'

You don't need to know how to play the game the computer will quickly teach

you. (. . . There's one born every minute . , .)

1 IN. "ENTER A NUMBER FROM 1 TO 100" lN

2 F. I=1TDN: J=RND( 32767) iN.I

10 REM * CRAPS GAME *

20 CLS

30 CIDSUB 300;P=N

40 P. :P. "YOU ROLLED ****") A |
" AND ",B|"****"

50 ON P GOTO 60. 120,120, 100,100,100.110.100,100,100.110,120

60 REM * USED FOR THE ON STATEMENT IF P=l [WHICH IT CAN'T)*

100 P." YOUR POINT IS" ;NtGOTO 130

110 PRINT " YOU WIN!" :P,:END

120 PRINT " YOU LD5E." 1P.1END

130 GOSUB 300:M=N

135 p. t p. "you Rolled ****"
i a 1

" and "iB,"****"

140 IF P=M THEN 1 10

150 IF M=7 THEN 120

160 G. 130

300 A=RND( 6 ) ;B = RND( 6 ) : N=A+B 1 RET

.

310 RETURN

Fire When Ready, Gridley

You have probably seen this popular graphics display at your Radio Shack Store.

It is very well done, and due to popular demand is printed here. Little boys of all

ages are fascinated by it, and it's great for showing off your computer. You will

want to keep this one on tape for fast loading.

CASTLE SHOT

5 REM * CASTLE SHOT *

10 INPUT "ENTER YOUR INITIALS" ;A*

20 CLS

30 2=7*

40 FOR Y=17 TO 47

50 FOR X=Z TO 127

60 SET {X.Y1

70 NEXT X

80 IF Y<23 THEN Z=Z + 2

200 NEXT Y

210 FOR X = 75 TO 123 STEP 4

220 SET (X, 16

)

230 SET ( X+l , 16 )

240 NEXT X

250 Q=0

300 FOR X=95 TD 125 STEP 5

212

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


310 FOR Y=47 TO 35 STEP -1

320 RESET (X, Y)

330 NEXT Y

340 NEXT X

400 FOR X = 95 TO 125

410 RESET <X ,34

)

420 NEXT X

500 PRINT AT 6B8, A*i'"S CASTLE" j

600 FOR X=73 TO 100

610 SET (X.12)

620 SET <X,13>

6 30 NEXT X

700 FOR X=85 TO 95

710 SET {X, 14)

720 SET [X, 15 >

730 NEXT X

740 RESET (90,13)

750 RESET (91,13)

1000 FOR Z=l TO 2

1010 FOR X=2 TO 14

1020 FDR Y=40 TO 43

1030 SET ( X, Y)

1040 NEXT Y

1050 NEXT X

1100 FOR X=3 TO 13 STEP 2

11 10 RESET <X,41 )

1120 NEXT X

1130 RESET (7.43)

1 140 RESET (8,43)

1190 REM THIS WILL MAKE THE CANNON RECOIL

1200 FOR X=l TO 100:NEXT X

1210 RESET (73,12)

1220 RESET (73.13)

1230 RESET (74 , 12)

1240 RESET (74, 13)

1250 SET ( 101 , 12)

1260 SET (101,13)

1270 SET ( 102, 12)

1280 SET t 102, 13)

1290 FOR X=l TO 100INEXT X

1300 SET (74,12)

1310 SET ( 74 , 13)

1320 SET (73,12)

1330 SET ( 73, 13)

1340 RESET ( 102. 12)

1350 RESET ( 102, 13

)

1360 RESET (101,12)

1370 RESET (101,13)

1500 FOR X=71 TO 2 STEP -1

1510 P=X-73

1520 Y=P*P/150 + 12

1530 SET (X.Y)

1540 SET (X-l , Y)

1600 RESET (X+1,0)

1610 RESET (X,Q

)

1620 Q=Y

1630 NEXT X

1640 PRINT AT 771, " KAPOW !

"

1700 GOSUB 1900

1710 FOR X=l TO IS

1720 RESET ( X, 45 )

1730 RESET (X,36)

1740 RESET ( X , 37

)

213

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


1750 NEXT X

1820 NEXT Z

1910 PRINT AT

1B20 END

1900 FOR X=l TO 1000

1910 NEXT X

1920 RETURN

House Security

10 REM * LOGICAL AND PROGRAM *

15 CLS

2a Y=l iN=0>P. " PLEASE ANSWER YES OR NO TO THE FOLLOWING QUESTIONS"

25 P .

30 INPUT " tS THE FRONT DOOR LOCKED" ;A

40 INPUT " IS THE BACK DOOR LOCKED" iB

50 INPUT " IS THE KITCHEN WINDOW CLOSED" ;C

60 INPUT " IS THE BEDROOM WINDOW CLOSED AND LOCKED" ;D

70 INPUT " IS THE GARAGE DOOR LOCKED" ;E

75 P. :P.

80 IF (A = Y >*<B=Y)*[C=Y>*<D=Y)*[E=Y) THEN 120

90 P." HOUSE NOT LOCKED UP FOR THE NIGHT."

95 P .

100 P." PLEASE CHECK POR AN UNLOCKED DOOR OR WINDOW."

110 END

120 P." HOUSE SECURITY CHECK SHOWS HOUSE LOCKED UP FOR THE NIGHT."

130 END

214

Loan Amortization

This program provides a fully developed installment plan for the repay-

ment of small-to-moderate size loans, such as car or home improvement

loans. The program includes all instructions necessary to using it. Use it

with common sense; in the last payment period, amounts may be

carried out to a fraction of a cent.

Challenge: modify the program to eliminate fractional-cent payments,

without changing the total amount paid as interest or principal.

10 C=0:CLS;IN. " PR I NC I PAL " i

P

20 IN . " * OF PERIODS" iL

30 IN . " INTEREST RATE" jR

40 I=R/i 2 i 1=1/100

50 T= 1 : F .X=1TDL

60 T=T*I 1+1 ) iN/.X :T=l/T

70 T=l-T

60 M=P*I/T

B5 H=INT( H* 100+.S >/ 100

90 GDS.200

100 F.Z=1T0L

1 10 IFC< I 3G. 120

115 IN. "PRESSENTER TO CONT I NUE " : A J I C =0 t GOS . 200

120 A=< INT< P* 1*100+ ,5} 1/100

130 B=M-AjP=P-B

140 P.Zj iP. T. ( 10 ) ,P i iP, T. ( 20 ) ,M

j

150 P,T. [ 30 ) ,B; :P.T . (40 ) .

A

160 C=C+1 (N.

Z

170 END

200 CLSiP. "PAYMENT REMAINING MONTHLY PRINCIPAL INTEREST"

210 P. "NUMBER PRINCIPAL PAYMENT PAYMENT PAYMENT"

220 RET.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


"IF THIS BOTHERS YOU-
WE'U HAVE IT REMOVED."

Appendix:
A. Subroutines

B. Cassette Data Files

C. Combined Function and ROM Test

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Appendix A:

Subroutines

Subroutines listed in this Appendix:

Square Root
Exponentiation

Logarithms (Natural and Common)
Exponential (Powers of e)

Tangent

Cosine

Sine

ArcCosine

ArcSine

ArcTangent

Sign

Square Root

Computes: SQR(X), *TX~

Input: X, must be greater than or equal to zero

Output: Y -

Also uses: W,Z internally

Other subroutines required: None

How to call: GOSUB 3(903(9

These subroutines will let you run programs which require advanced math
functions not directly available in LEVEL I BASIC.

If you entered all the subroutines exactly as they're listed, you'd have less

than 700 bytes of memory left for your main program — not enough to do
much of anything. So just enter the subroutines you need, and omit REM
statements if you're still short on space.

Once you've entered a subroutine and gotten it running, save it on a

Cassette. Try saving different combinations of subroutines on Cassettes: for

example, make a SIN/COS/TAN cassette, a SIN/SQR cassette, an EXPO-
NENTIATION/LOG/EXPONENTIAL/SGN cassette - whatever combina-

tions are useful to you.

Each subroutine listing has a set of instructions in the margin. Study them
closely. You'll see that some subroutines require other subroutines for in-

ternal calculations. You must enter these "auxiliary subroutines" when the

instructions call for them.

Always enter 30000 END as a protective block when using subroutines. For

complete information on the use of subroutines, see Chapter 25.

NOTE: Accuracy of the subroutines is less than the accuracy of LEVEL I math operators

and intrinsic functions. This is due to two factors: 1. The subroutines contain many chain

calculations, which tend to magnify the small error of individual operations. 2. These

subroutines are only approximations of the functions they replace. In general, the sub-

routines are accurate to five or six decimal places over much of their allowable range,

with a decrease in accuracy as the input approaches the upper or lower limits for input

values.

30000 END

30010 REM *SOUARE ROOT* INPUT X, OUTPUT Y

30020 REM ALSO USES W & Z INTERNALLY

30030 IF X = T. Y = : RET,

30040 IF X>0 T. 30060

30050 P. "ROOT OF NEGATIVE NUMBER?" : STOP

30060 Y=X* .5 : Z =

30070 W=(X/Y-Y!*.5

300 80 IF { W = 0) + tW=Z ) T. RET.

30090 Y=Y+W : Z=W : G. 30070

216

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Exponentiation

Computes: X Y (X to the Y power)

Input: X,% If X is less than zeso, Y must be an odd integer

Output: P

Also uses: E, L, A, B, C internally. Value of X is changed.

Other subroutines required: Log and Exponential

How to call: 3012(9

Logarithms (Natural and Common)

Computes: LOG(X) base e, and LOG{X) base 10

Input: X greater than or equal to zero

Output: L is natural log (base e), X is common log (base 10)

Also uses: A,B,C interally. Value of X is changed.

Other subroutines required: None

How to call: GOSUB 30190

Exponential

Computes: EXP (X) (e to the X power)

Input: X

Output: E

Also uses: L,A internally. Value of X is changed.

Other subroutines required: None

How to call: GOSUB 30250

30000 END

30100 REM *EXPONENTI ATION* INPUT X,Y t OUTPUT P

30110 REM ALSO USES E , L , A , B , C INTERNALLY

30120 P=l : E = 2 j IF Y = T. RET.

30130 IF (X<0)*( INT( Y)=Y1 T. P=l-2*Y+4* INT[ Y/2 ) t X =-X

33140 IF XO0 T. GOS. 30190 t X = Y*L : GOS. 30250

32150 P =P*E : RET.

30000 END

30170 REM *NATURAL & COMMON LOG* INPUT X. OUTPUT L,X

30175 REM OUTPUT L IS NATURAL LOG, OUTPUT X IS COMMON LOG

30180 REM ALSO USES A.B.C INTERNALLY

30190 E=0 : IF X<2 T. P. "LOG UNDEFINED AT" jX:STOP

30195 A=l i B = 2 : C=.5

32200 IF X>=A T. X=C*X : E = E + A : G. 30200

30205 IF X<C T. X=B*X : E=E-A : G. 30205

30210 X=(X- ,707127)/{ X+ .707137 ) : L =X*X

30215 L=C({ ,598979*L+. 961471 )*L+2.88539)*X+E-. 5)*, 693147

30220 IF ABS(LXlE-6 T. L =

30225 X=L*. 4342945 : RET.

30000 END

32240 REM * EXPONENT I AL* INPUT X, OUTPUT E

30245 REM ALSO USES L,A INTERNALLY

32250 L=INT( 1 . 4427*X)+1 : IF L<127 T. 30265

32255 IF X>0 T. P. "OVERFLOW "
: STOP

30360 E=0 : RET.

30265 E= .693147*L-X : A= 1 . 3 29 B 8E- 3- I . 4 1 3 1 6E-4 *E

30275 E=(((A-. 166665)* E+. 5)* E-1)*E+1 : A=2

30280 IF L<=0 T. A= . 5 i L=-L : IF L=0 T. RET.

30285 F. X=l TO L : E=A*E : N. X : RET.

217

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Tangent

Computes: TAN(X)

Input: Xin degrees ;

Output: Y

Also Uses: A,C,W and Z internally. Value of X is changed.

Other subroutines required: Cosine, Sine

How to call: GOSUB 3032(8

30000 END

30300 REM *TANGENT* INPUT X IN DEGREES, OUTPUT Y

30310 REM ALSO USES A,C,W,Z INTERNALLY

30320 A = X i GOS. 30360

32330 IF AGS (YX1E-5 T. P. "TANGENT UNDEFINED" i STOP

303*0 C=Y : X = A t GOS. 30376 t Y = Y/C : RET.

Cosine

Computes: COS(X)

Input: X in degrees

Output: Y

Also uses: W and Z internally. Value of X is changed.

Other subroutines required: Sine

How to call: GOSUB 3036(3

30000 END

30350 REM *COSINE* INPUT X IN DEGREES, OUTPUT Y

30351 REM ALSO USES W,Z INTERNALLY

30360 W=ABS(X)/X:X=X+90 i GOS. 321376 * J F{ Z=-l ) * ( W= 1 >T . Y=

30365 RET.

Sine

Computes: SIN(X)

;]lnp«t: X degrees

Output: Y

Also uses: Z internally. Value of X is changed.

Other subroutines required : None

How to Call: GOSUB 30376

30000 END

38370 REM *SIN* INPUT X IN DEGREES, OUTPUT Y

33371 REM ALSO USES Z INTERNALLY

30376 2=ABS< X)/XiX=Z'x

303BB IF X>360 T. x=x/360 i X={X-INT(X) 1*360

303 9 IFX>9 0T.X=X/90> Y=INT< X) : X=

(

X- Y )
* 90 : ONYG . 30 410.30420, 3043B

30402 X=X/57. 29578 i IF A6 S{ X )<2 . 486 1 6E- 4 Y=QtRET.

3040S G. 33*40

30410 X=90-X : G. 30400

30420 X = -X i G. 30400

30430 X=X-90 i G. 30400

30440 Y=X-X , X", X/6 + X*X , X*X+X/120-X*x*X*X*X*X ,, X/S040

30450 Y=Y+X , X*X*X*X , X*X*X*X/362880 : IF Z=-1T,Y=-Y

30455 RET.

218

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


ArcCosine

Computes: Arccos(S), angle whose cosine is S

Input: S,0«=SO=1

Output: Yin degrees, Wi$ in mdians

Also uses: X,Z internally

Other subroutines required: ArcSine

How to call: GOSUB 30500

33000 END

30500 REM *ARCC05* INPUT 5, OUTPUT Y,W

30510 REM Y IS IN DEGREES, W IS IN RADIANS

30520 GOS. 30550 : Y=90-Y : W = 1.570796-W : RET.

ArcSine

Computes: ArcSin(S), angle whose sine is S

:lriput;:.Sv0<=S<=l:.

Output; Yin degrees, Win racEi^»

Also uses: X,Y internally

Other subroutines required: None

How to call: 30550

30000 END

30530 REM *ARCSIN SUBROUTINE* INPUT S, OUTPUT Y,W

30535 REM Y IS IN DEGREES, W IS IN RADIANS

30540 REM ALSO USES VARIABLES X,Z INTERNALLY

305S0 X = S i IF ABSt S )<= . 707107 T. 30610

30560 X=1-S*S i IF X<0 T. P. Si "IS OUT OF RANGE" : STOP

30570 W=X/2 t Z=0

30580 Y=(X/W-W>/2 : IF <Y=0)+{Y=Z) T. X = W : G. 30610

30600 W=W+Y i Z=Y G. 30580

30610 Y=X+X*X*X/6+X*X*X*X*X* . 075 + X +X*X *X*X*X*X* 4 . 464286 E-

2

30620 W=Y+X*X*X*X*X*X*X*X*X*3.038194E-2
30625 IF ABS( S)>. 707107 T. W=1.570796-W

30630 Y=W*57. 29578 : RET.

ArcTangent

Computes: ATN{X), angle whose tangent is X

Input: x

.O^ut;v;^
: |n

;

;de^.e3j'A
:

:in''ricnans

Also uses: B,T internally. Value of X is changed.

Other subroutines required: Sign

How to call: GOSUB 30690

30000 END

30660 REM *ARCTANGENT* INPUT X, OUTPUT C ,

A

30670 REM C IS IN DEGREES. A IS IN RADIANS

306B0 REM ALSO USES B,T INTERNALLY

30690 GOS. 30810 : X=AB5(X) : C=0

30700 IF X>1 T. C=l : X=l/X

30710 A=X*X

30 7 20 B=t ( 2 .86 62 3E-3*A-1 .61657E-2 )*A + 4 . 2909 6E-2 >*A

30 7 30 B=( ( ( (B-7.5289E-2)*A+. 106563)* A- , 14 2089 ) *A+. 19 99 36)*A

30740 A=( (B- . 333332 )*A+1)*X

30750 IF C=l T. A=1.570796-A

30760 A =T*A j C=A*57. 29578 : RET.

219

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Sign

Computes: SGN(X), the sign-component of X

Output: To equal to —1 for X negative, for X zero,

Ifllll +1 for X positive

Also uses: No other variables

Other subroutines required : None

How to call: GOSUB 30810

220

30000 END

30802 REM *SIGN* INPUT X, OUTPUT T=-t,0 OR +1

30810 IF X<0 T. T=-l

30820 IF X = T. T=0

30830 IF X>0 T. T=l

30840 RET.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Appendix B:

Cassette Data Files

The material in this Appendix is optional and yet very important. The more practical pro-

gramming you do, the more you'll appreciate your TRS-80's data file capabilities. They
allow you to go from the world of programming to the larger world of data processing.

Up to now we've relied on LEVEL I's 26 number variables A to Z, 876 (or less) array loca-

tions A(X), two string variables A$ and B$, and DATA lines to store the data our programs
need. This leaves us with two limitations:

1. The Computer's memory may not be large enough to hold all the data we need (for

example, an inventory list).

2. When we turn off the Computer, the values of A,B,A(X), etc., are lost.

Cassette data files solve both of these problems. We can save huge quantities of information
on tape and retrieve them later, just as we save and reload programs. Only instead of the

commands CSAVE and CLOAD, we use the special statements PRINT # and INPUT #.

Press RECORD and PLAY keys on your Recorder at the same time, then type in the fol-

lowing lines and run s

50 A=l :B = 2 jC = 3

100 PRINT # A ;
"

,
" ;B ;

"
,
"

;

C

Note the special punctuation required to separate each variable to be printed onto tape.

The sequence of five characters {;",";) must be inserted between every two variables in a

PRINT # statement.

This program causes three things to happen:

1. The Tape Recorder is automatically started (assuming you have it set in the RECORD
mode).

2. The values of A, B and C are written onto the cassette.

3. The Recorder is automatically stopped. (You should then press STOP on the Recorder
to disengage the recording head.)

You now have a permanent record which can easily be read back; into the Computer. Note
that the variables A, B and C are not written onto the tape — just the values of those vari-

ables (in this case, 1, 2 and 3) are stored.

What we mean is, ymt^t bki-ilife to (Mlpts m6re
with larger quantities of information.

perform the exercises;m this Appejidtx^ you _

need to keepyoar Tape Recorder connected and
set in the pioper mode — RECORD, &LAY or
STOP — as indicated in the text. Inse&iE blank
cassettetapeandset the tape countette zero so
you 11 know where you started the -d I'-Sle,...

:.: :::,

221

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


To read back the data from tape, you must first press REWIND on the Recorder to rewind

the tape to the point where the data file started. (You'll have to disconnect the REMote

plug to gain manual control of the recorder. When you have rewound the tape to the start-

ing point, reconnect the REMote plug.)

Type NEW to clear out the old program and enter these lines:

100 A=0: B=0: C=0

110 INPUT # A.B.C

120 PRINT "THE DATA HAS BEEN READ FROM THE TAPE."

130 PRINT "A= M ;A t

M B=" ;B, M C= " ;C

Now press PLAY on the Recorder and typeRUN.

If the data from the earlier program was stored and read properly, the Computer should

display

:

THE DATA HAS BEEN READ FROM THE TAPE

A= 1 B= 2 C= 3

READY

>-

Line 100 sets our variables to zero. If the data is not read properly, A, B and C will be

output as zero.

Line 110 causes the Recorder to start, loading three numbers into the variables A, B and C.

When the three numbers have been read, the Recorder motion is stopped.

Line 120 prints a reassuring message. This is important when the Computer is using an

external device such as a Tape Recorder. Print messages are also valuable as prompting

instructions to the user regarding the control of the Recorder. For example, before the

Computer executes a PRINT # statement, we can have it print a message telling the user

to put the Recorder in the Record mode.

Line 130 prints the data that was read from the tape.

NOTE: If the Recorder is not in the PLAY mode (with proper connections made) when it

executes an INPUT # statement, the Computer will keep trying to read the tape until it

gets something. You have no keyboard control of the Computer during such an input

operation, so it is effectively locked-up. The only way to unlock it is to press the Reset

button located in the expansion port on the left rear corner of the Keyboard. This will

terminate the entire program, but will not erase it.

222

No unusual punctuation is required to separate the

variables on an INPUT # statement — just the

Ordiaary:.cQ««iaas. ..-•„.-- ---
: , - :

"

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


One last word of advice: If you PRINT # a list of, say, 10 values onto tape, you should

INPUT # a list of 10 values also. If you don't match up the number of PRINT # items

with the number of INPUT # items, you'll end up either losing data or going into the

lock-up condition described above.

The following program demonstrates how a data file can be used to create a list of data

items, process and update it. Study it carefully and think how similar programs might
handle inventories, or any sequential lists.

1 REM
5 C =

7 B =

10 IN .

*AVG
CLS

TEMP AND HUMIDITY USING A DATA FILE*

20
30
40
50
53
55
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
2 10
220
230
240
250

"WHAT DAY OF
'WHAT WAS THE

THE MONTH IS IT" ;D
TEMPERATURE TODAY " ;T

,
" WHAT WAS THE

D=l THEN 160
HUMIDITY " ;H

IN
IN
IF
P. "LOAD PREVIOUS TEMPERATURES AND
P. "FIRST REWIND TAPE TO BEGINNING
P, "THEN PRESS RECORDER'S PLAY KEY
IN. "PRESS ENTER WHEN READY" ;A$
FOR X=l TO D-

1

INPUT # Y.Z
B =B+Y
C =C+Z
NEXT X

B=( B + T )/D
C=CC+H)/D
CLS:P. "THE AVERAGE

HUMIDITIES THIS MONTH."
OF DATA FILE. "

TEMPERATURE IS" ;B
"THE AVERAGE HUMIDITY IS";C
sP. "NOW THE TRS-80 WILL WRITE"
"TODAY'S TEMPERATURE AND HUMIDITY"
"ONTO THE TAPE. "

"SO PRESS RECORD AND PLAY KEYS"
"BUT DO NOT REWIND."

IN. "PRESS ENTER WHEN READY" ;A$
PRINT n T; "

,
" ;H

P. tP. "NOW TODAY'S INFO IS ADDED TO THE TAPE
P .: P. "PLEASE PRESS STDP KEY ON THE RECORDER
END

P.

P ,

P.

P,

P.

P,

FILE
ii

Line 70 reads back all the previous days' numbers, two at a time. When all the information

is read in, the average temperature and humidity are calculated (using the current day's

info as well).

Line 2
1

then writes the current day's information at the end of the list.

223

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


For a sample run of the program, assume it is the first day of the month. Enter plausible

temperature and humidity figures. Continue running the program until you've got a cumu-

lative listing for several days. Getting the feel for data files?

Suggestions for Further Use of Data Files

1

.

Teaching/Testing. Write a program that gives a multiple-choice test, for example, a voca-

bulary test. Include ten questions. The program should write the student's name and all

ten responses onto a cassette data file. Design the program so that any number of students

may take the test in sequence. Include instructions about when to use the RECORD,
PLAY and STOP keys.

Write a grader program that uses the data file created above to read each student's name and

responses, grade the test, and then read the next student's test. Be sure to leave time for the

teacher to mark down the names and grades in his or her little black book.

2. Inventory. Write a program that sets up an array in which you store the following infor-

mation about a group of cars;

License No. Engine Size Color Code Body Style

The program should then store the array in a data file.

W7

rite another program which

1. Asks you which car you're interested in (you enter the license number).

2. Reads the data file until it comes to the correct license number.

3. Prints out all the information about that particular car.

(See Chapter 21, where this same array was
developed,)

M

224

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Appendix C:

Combined Function and ROM Test

The following program puts the TRS-80 through its paces — all of them. If you're having
trouble running a program, and you think it may be the Computer's fault, try this program
on it. (First check to see that the Computer powered-up properly by running the P.M.
test described in Chapter 26.)

Program execution is in three stages:

1. Function checkout {takes about 5 seconds)

2. RAM checkout (takes a few minutes)

3. Display checkout. This lets you check centering, straight-line distortion, etc. (Takes
hardly any time at all — pressMflhl^ to "redraw" test pattern.)

If at any point the Computer comes back with a "BREAK AT ###" (### will be a line

number), you know that one of the functions isn't performing properly (ROM error). In
case of a RAM error, BREAK message will be preceded by the message "RAM ERROR".

If you don't get a BREAK message (or an infinite loop), you can relax about the TRS-80
and go back to troubleshooting your program.

Type in the program VERY CAREFULLY, get it running properly, then save it on tape for
later use.

10 IN. "TYPE 1, THEN PRESS ENTER M ;X

15 CLSjP.AT0; "TRS-8J3 FUNCTION TEST"

20 READ Y

30 DATA 2

40 RESTORE

50 READ Y

55 F. A=1TD1000 sN.

A

60 IFX>YSTOP

225

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


70 IFX>=YSTOP

80 IFY<XSTOP

90 IFY<=XSTDP

100 F.X=1TO10STEP2

110 GOTO130

120 STOP

130 GOS. 150

140 GQTO160

150 RETURN

160 ONXGOTO180

170 STOP

180 SET( X , Y)

185 IFPOINTCX, Y)G. 190

187 STOP

190 RESETCX.Y)

200 IFXOY-1STOP

210 IFY=X+1G. 230

220 STOP

230 Z=RND( 0)

240 X=l .

1

sX=INT< X)

245 Y=ABS<X)/2+.5

250 IFY=1G. 270

260 STOP

270 REM EVERYTHING IS OK

226

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


290 CLSiP.TAB(5), "ALL FUNCTIONS ARE O.K., THE RAM TEXT IS NOW
RUNNING .

"

300 A=M./4-l :B=0

310 F. Y=lT08sQ=.5

320 F.B=1T0Y;Q=Q*2 :N.B

330 F.X=0TOA : A( X)=Q :N.X

340 F.X =0TOA j IFA(X)OQP . "RAM ERROR" sSTOP

350 N.X

360 P.AT68 ,Q iN, Y jP . AT0 ; "THE RAM TEST IS COMPLETE"

370 F.A=1TO2500:N.A

400 CLSsK=l

410 A$=GH

420 F.X=1T032 sP.A$; :N.X

430 F.X=1TD14 iP . T. { 29 ) ; A$ :N.

X

440 P. AT 469

;

450 F. X=1T09 :P . A$ ; :N.X sP.

460 P.T. ( 21 ) ; sF .X=1T09 :P. A$ i ) N.X

470 P.AT960;

480 F .X=1T031 sP, AS ; : N.

X

490 IN.BS

500 IFK>0A$=80

510 IF K<0A$=GH

520 K=-K

530 CLStG.420 227

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Interface Specifications

Cassette

Suggested Input Level for

Playback from Recorder

Typical Computer Output

Level to Recorder

Remote On/Off Switching

Capability

2 V peak-to-peak at a minimum
impedance of 360K ohms

800 mV peak-to-peak at IK ohm

0.5 A max at 6 VDC

DIN Jack Pin Connections (See Figure 1)

1 — Remote
2 — Signal ground

3 — Remote
4 — Input from recorder's earphone jack

5 — Output to recorder's Aux or Mic jack

Video Signal

DIN Jack Pin Connections (See Figure 1)

1 — +5 VDC at 50 mA
2 — Not used

3 — Not used

4 — Video signal, 1 .4 V
peak-to-peak, 0.4V
negative sync, 75 ohms

5 — Ground

Figure 1 . Pin Connections
for TAPE and VIDEO DIN
Jacks (viewed from rear of

keyboard assembly)

Pin Connections for Expansion
Port Edge Card

(See Figure 2)

SIGNAL
P/N NAME DESCRIPTION

1 RAS* Row Address Strobe Output for 16-Pin Dynamic Rams
2 SYSRES * System Reset Output, Low During Power Up Initialize or

Reset Depressed
3 CAS* Column Address Strobe Output for 16-Pin Dynamic Rams
4 A10 Address Output
5 A12 Address Output
6 A13 Address Output
7 A15 Address Output
8 GND Signal Ground
9 All Address Output

10 A14 Address Output
11 A8 Address Output
12 OUT* Peripheral Write Strobe Output
13 WR* Memory Write Strobe Output
14 INTAK* Interrupt Acknowledge Output
15 RD* Memory Read Strobe Output
16 MUX Multiplexor Control Output for 16-Pin Dynamic Rams
17 A9 Address Output
18 D4 Bidirectional Data Bus
19 IN* Peripheral Read Strobe Output
20 D7 Bidirectional Data Bus
21 INT* Interrupt Input (Maskable)

22 Dl Bidirectional Data Bus
23 TEST* A Logic "0" on TEST* Input Tri-States A0-A15, D0-D7,

WR*,RD*,IN*,OUT*,RAS*,CAS*,MUX*
24 D6 Bidirectional Data Bus
25 A0 Address Output
26 D3 Bidirectional Data Bus
27 Al Address Output
28 D5 Bidirectional Data Bus
29 GND Signal Ground
30 D0 Bidirectional Data Bus
31 A4 Address Bus
32 D2 Bidirectional Data Bus
33 WAIT* Processor Wait Input, to Allow for Slow Memory
34 A3 Address Output
35 A5 Address Output
36 A7 Address Output
37 GND Signal Ground
38 A6 Address Output
39 +5V 5 Volt Output (Limited Current)

40 A2 Address Output
NOTE: *means Negative (Logical "0") True Input or Output

Mates with AMP P/N 88103-1 Card
Edge Connector or Equivalent

I 3 5 7 9 11 13 15 17 19 21 23 25 .27 29 31 33 35 37 3S

... n c i—i n r—i t—it—1[—ir—inr-ir—ir—ir—1 l~1 C3 n t^L—xn £=H—_.

LJ LI l_J 1-1 -CT— a EJ l_l U UL-JLJL-II—J

- LJLJLJ
2 A 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Figure 2. Connection points for

Expansion-Port Edge Card (viewed

from rear of keyboard assembly)

228

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

229

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

230

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Notes:

231

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Summary of LEVEL 1 BASIC

Commands Purpose

NEW Clears out all program

lines stored in memory

RUN Starts program execution

at lowest-numbered line

RUN# # # Starts program execution

at specified line number

LIST Displays the first 12 pro-

gram lines stored in

memory, starting at low-

est numbered line. Use

key to display higher-

numbered lines (if any)

Example
Described in

Chapter(s)

NEW (not part of program)

RUN (not part of program)

RUN 300 (not part of program)

LIST (not part of program)

1

11

LIST### Same as LIST, but starts LIST 300 (not part of 11

at specified line number program)

CONT Continues program execu-

tion when BREAK AT
CONT (not part of program) 11

### is displayed

Described in

Statements Purpose Example Chapters)

PRINT Prints value of a 10 PRINT "A+B="; 1,2,3

variable or expression; A+B
also prints whatever is

inside quotes

INPUT Tells Computer to let

you enter data from

the Keyboard

1(? INPUT A,B,C 7

INPUT Also has built-in

PRINT capability

10 INPUT "ENTER A"; A 7

READ Reads data in DATA
statement

10READA,B,CA$ 16

DATA Holds data to be read

by READ statement

20 DATA 1,2,3, "SALLY" 16

RESTORE Causes next READ
statement to start with

first item in first

DATA line

30 RESTORE 16

LET

GOTO

232

(Optional) Assigns a new value LET A=3.14159
to variable on left of

equals sign

Transfers program control 10 GOTO 300
to designated program line

Statements Purpose

Described in

Example Chapters)

IF-THEN Establishes a test point 10IFA=B THEN 300 6

FOR-NEXT Sets up a do-loop to be

executed a specified

number of times

10 FOR 1=1 TO 10 10,11

20 NEXT I 13

STEP Specifies size of increment 10 FOR 1=0 TO 10 STEP 2 10

to be used in FOR-NEXT
loops

STOP Stops program execution

and prints BREAK AT
### message

END Ends program execution

and sets program counter

to zero

GOSUB Transfers program control

to subroutine beginning at

specified line

RETURN Ends subroutine execution

and returns control to

GOSUB line

ON Multi-way branch used

with GOTO and

GOSUB.

10 IF A(B STOP 1

1

99 END

10 GOSUB 3000 15,25

3010 RETURN 15,25

10 ON N GOTO 30,40,50 15

10 ON N GOSUB 3000,
4000, 5000

Print

Modifiers Purpose

AT (Follows PRINT) Begins

printing at specified

location on Display

Described in

Example Chapters)

10 PRINT AT 650, "HELLO" 22

TAB (Follows PRINT) Begins

printing at specified

number of spaces from

10 PRINT TAB (10);
"MONTH"; TAB (20);

"RECEIPTS"

12

left margin

Graphic Described in

Statements Purpose Example Chapter(s)

SET Lights up a specified

location on Display

10 SET (30,40) 20,22

RESET Turns off a specified

graphics location on

Display

20 RESET (30,40) 20,22

POINT Checks the specified

graphics location: if

point is "on", returns

a 1; if "off, returns

a0.

30 IF POINT (30,40)= 1

THEN PRINT "ON"
22

CLS Turns off all graphics

locations (clears screen)

10 CLS 10,20

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


Built-in Described in
Functions Description Example Chapter(s)

MEM Returns the number of

free bytes left in

memory

10 PRINT MEM 8

INT(X) Returns the greatest

integer which is less than

or equal to X

10I=INT(Y) 14

ABS(X) Absolute value ofX 10M=ABS(A) 17

RND (0) Returns a random
number between and 1

10X=RND(0) 19

RND(N) Returns a random
integer between
landN

10X=RND(500) 19

Math Described in

Operators Function Example Chapters)

+ Addition A+B 3

- Subtraction A-B 3

* Multiplication A*B 3

/ Division A/B 3

Assigns value of right-

hand side to variable

on left-hand side

A=B 3

Relational Described in

Operators Relationship Example Chapters)

< Is less than A<B 6

> Is greater than A>B 6

= Is equal to A=B 6

<= Is less than or equal to A<=B 6

>= Is greater than or equal to A>=B 6

Is not equal to AOB 6

Logical Described in

Operators Function Example Chapter(s)

* AND (A=3)*(A=7)
"A equals 3 and

A equals 7"

24

+ OR (A=3)+(B=7)
"A equals 3 or

B equals 7"

24

Variables Purpose

A through Z Take on number values

A$ and B$ Take on string values

A(X) Store the elements of
a one-dimensional array

Described in

Example Chapter(s)

A=3.14159 3

AS=RADIO SHACK 16

A(0)=400 21

LEVEL I

Shorthand Dialect

Command/Statement Abbreviation Command/Statement Abbreviation

PRINT P. TAB (after PRINT) T.

NEW N. INT I.

RUN R. GOSUB GOS.

LIST L. RETURN RET.

END E. READ REA.

THEN T. DATA D.

GOTO G. RESTORE REST.

INPUT IN. ABS A.

MEM M. RND R.

FOR F. SET S.

NEXT N. RESET R.

STEP (after FOR) S. POINT P.

STOP ST. PRINT AT P.A.

CONT C.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/


RADIO SHACK Ma DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH. TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U K

280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE NSW 2116 5140 NANINNE WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

Downloaded from www.Manualslib.com manuals search engine 

http://www.manualslib.com/

