United States Patent

(1 3,623,156

[72] Inventor Thomas E. Oshorne
San Francisco, Calif.

[21] Appl. No. 827,795

[22] Filed May 26, 1969

[45] Patented Nov. 23,1971

[73] Assignee Hewlett-Packard Company
Palo Alto, Calif.

Original application June 23, 1966, Ser.
No. 559,887, now Patent No. 3,566,160,
dated Feb. 23, 1971. Divided and this
application May 26, 1969, Ser. No.
827,795

[54] CALCULATOR EMPLOYING MULTIPLE
REGISTERS AND FEEDBACK PATHS FOR
FLEXIBLE SUBROUTINE CONTROL

29 Chaims, 40 \Drawing Figs.

[52] US.Clh..iiiiiiiiiiiie e 340/172.5

{511 Iat.ClL....... .. GOs6t9/16

[50] FieldofSearch........................cccooni, 340/172.5;
235/157

[56]) References Cited

UNITED STATES PATENTS

3,094,610 6/1963 Humphrey, Jr.etal. ..., 340/172.5 X

3,153,225 10/1964 Merneretal................. 340/172.5

3,268,872 8/1966 Kimlinger....... 340/172.5

3,302,183 1/1967 Bennettetal 340/172.5

3,341,819 9/1967 Emerson..... 340/172.5

3,355,714 11/1967 Culler.......... 340/172.5

3,366,929 1/1968 Mulleryetal................. 340/172.5

Primary Examiner—Gareth D, Shaw
Assistant Examiner—Sydney R. Chirlin
Attorney—Roland 1. Griffin

ABSTRACT: Internal control and subroutine logic transfers

data between a keyboard input, a random access memory, and
a plurality of flip-flop registers to perform arithmetic opera-
tions and transfers the results of these operations to a cathode-
ray tube output display. The flip-flop registers include a pro-
gram register comprising a set of primary flip-flops for
designating a subroutine to be performed and a set of seconda-
ry flip-flops for sequentially designating a group of one or
more instructions to be executed in each state of the
designated subroutine. The primary and secondary flip-flops
are controlled by multiple feedback paths. Power switching is
employed in the internal control and subroutine logic so that
the subroutines and instructions are supplied with power only
when they are to be executed. The flip-flop registers also in-
clude a memory access register for receiving information read
from and to be written into the random access memory. When
a random access memory cycle is required, it is automatically
interposed between the otherwise regularly recurring logic cy-
cles by the internal control and subroutine logic. Separate
logic circuits are provided for enabling the state of the secon-
dary flip-flops to be directly transferred to the memory access
register and vice versa so that encoded transfer vectors may be
stored in the random access memory and subsequently
decoded by the internal control and subroutine logic to permit
unrestricted subroutine returns. In the keyboard input two
power supply returns are employed to define one bit of the
keyboard encoder. The random access memory is partitioned
into one portion addressed by a single bit in an address register
and into another, larger portion addressed by the remaining
bits in the address register. Each flip-flop of the machine is a J-
K flip-flop provided with an adjustable threshold for noise im-
munity and with a high internal gain on the J-K inputs. In the
cathode-ray tube output display, a recurring pattern generated
by integration in only two directions is selectively blanked to
display the results of the operations performed by the calcula-
tor. A tester may be connected to the machine for allowing all
subroutines to be operated in a single step mode. The tester is
provided with switches for initializing any internal state of the
machine or stopping normal execution under any prescribed
conditions and with apparatus for accessing the random ac-
cess memory.

TESTER
@
® WRITE MEMORY YWTM
Loge srag I oy T AT
i’ &
Cfégfca @B IKBF, K24
@ k42, K43
® @
SUBROUTINE ke Yo
DRIVE A
V) Lk 2e e
50000
o 50001
SUBROUTINE Y 50070 SUBROUTINE SEQUENCING ®
DECODERS
50011 MEMORY
o Lo 0 @ INSTRUCTION ORIVERS
DRIVERS 5Tl AND LOGIC bl
* - ADDRESS LINES
t T g -~
SHEROUTINE FUP@FLEF | FLi 0 | NN = INHBIT LINES
LINES — J-K LNES i THITS |t ®| @ ®y™&T LINES
@ REGISTERS REGISTERS
T I @
o%guv TESTER

FE% KEYS

PATENTEDNOY 23 1971

SHEET 01 OF 31

[FROM DisPLAY

3,623,156

READ (WIA) TO Flg. 2 T0 FiG. 3
L E. S0M -~ 8FF
NO
.
NO @ NO .
YES YES (¢
@ @ 00000+ TIA 00000+TIA
: LE. INITIALIZE LE INITIALIZE
(Mi) = KBD (ANS) » M(MANTISSA MANTISSA
L =OPERAND KEY i = OPERAND KEY DIGIT LOCATOR DIGIT LOCATOR 3
MEM AUX. STOR. 5T0 AUX. STOR. B T ® ==
FEATURE FEATURE 000000 55000 9
+00 +00 Qg
- KBD +KBD ¥
ADS. L NEG. -
CLEAR CLEAR >
—~ Q¢
! =5
00000 » WIA S ke “
SET S0M D "PKE" DOWN
[N0
00100 = WIA
/’ UPDATE SOM TO
VES Is ENTER MANTISSA DIGITS
] -
(Kfo) -+ KE;
KEs UNCHANGED
fees,
s g
Q)
OPERAND + Kf,
] ®
[(Keo) +1 =Ko |
1 ®
(TIA)+1-+TIA UPDATE MANTISSA ENTRY POSITION
!
OPERAND »KDi ENTER OPERAND INTO PROPER
L t=10-(TIA) CHARACTER POSITION
o Y o RETURN T0 DIsPLAY
INVENTOR

PROCESSING OF OPERANDS

FlG.1

THOMAS E. O5BORNE

3.623,156

PATENTEDNOV 23 1971

SHEET

02 OF 31

/014 =1 é 0

AVIdSIG W0H o

201YaId0
0XING),

Y]
2914 . B
S
SYOLYII0 T0¥LNOD INISSTD0¥d £
ZQ
Arsi0 L wyni3a 2w
2
I I I = 1 W
_ | S
091 ‘2=l m
Ag 05 Lidan SOX NS IO, |SIN NOIS FNUHD| |
¥ 0gH=00- 00D~ > -
o} |
9= 00+ 0---00 £y 0 /= VIM ~= 00000
i ' - qgX-00- 000+ €919 =0 0 A% - d QL W0s ILYGdn
® ® ¢ A9 WOS 21¥adn
ol Gl @
VIM = 00000| | g1 ‘gl / / u |
D AL WoS Uwadn| (A9 WOS LLYGdN | |€g=] ‘pg=] e - | __

) @ || A8 wos avaan| |48 wos Fivadn ! aex= (SNY)
|] . | T T | @ |
|)] i _ _ I _
) 1 1 | h . | i

227 9x3 230 01S WIN SHI ogx SNY
l | |
|) I I | " ” “
e e e e e - de O Lo e -~ P -

PATENTEDNOY 23 1811

SHEET 03 OF 31

3,623,156

T S _FROM DISPLAY

> 0 _—h

FIG. 2~ 0- Gy e FlG. 1
P
15

1|

(+00 0 00vAAT|

\CHANGE SIGN KDS | .

W
©

(KBD) - WRK
e MULTIPLICAND OR
QUOTIENT = WRK

@

[
MULTIPLY (SEE HG 4) DIVIDE (5EE F16 5
(KD) x (WD) »

(WD) tip) = W0
I_‘,,_ .

(KBD) = TmP
ie SAVE KBD

)
(KBD) = TMP
te. SAVE KBD

"“’j

) +(2
WE) + (KE) = WE KE
{ / te COAgPU Rﬂ/w

Le. COMPUTE RAW
CHARACTERBT/C OF

CHARACEEEISTIC of
———— o—

O
(NoRMALIZE (€€ FiG.6)]

/Nﬁo'jx 0
O

[(wkK) = k8D]

[(ANS) = wzeﬁ

B |

ACCUMULATE (SEE Fig. 7)
(WD) +(KD) = WD

| @
| NORMALIZE (SEE Fi6. 6))
®
[(WRK) *= ANS]
— &
(TMP) ~ KBD
ce. RESTORE KBD

@
[Mo = WiA]
an//m T0 DISPLAY

PROCESSING
ARITHMETIC OPERATORS

FlG. 3

INVENTOR
THOMAS E. O580KNE

FIG. 2, STATE D !

PATENTEDNOY 23 1871

SHEET

[e]

@

(WRK) = TMP
i.e. MULTIPLICAND = TMP

|®

000---0 = WRK
ie INITIALIZE WRK

BIG

3,623,156

oy 0F 31

f®

COMPARE SIGNS TDS
§ KDS. PUT SIGN OF
PRODUCT IN WD5

(TIA)-1+TIA

15
(TDO)=1l|

le

15
(riAyHl

g

@

(TDO) - TIA

[(WRK)! + |(xBD) | =WRK

|®

RS TMP

[®

i - 109

@y

/
|®

| ®

LRS WRK

1

(WIA) +1 = WIA

MULTIPLICATION
FlG. 4

INVENTOR.
THOMAS E. OSBORNE

PATENTEDNOY 23 187 3,623,156
SKEET 05 OF 31

0 »TD -9
eSS
0=TIA

YES

{ ®

ERROR - ATTEMPTED
+ BY ZERO

COMPARE KD5S
§ WDS. PUT S5IGN
OF QUOT. =TD5

T0 STATE (8
FIG. 2

®

FORM 10s COMPLEM.
OF KDo-9

|

®
1k [+ [wo)] =wo

G

[(100) -1 = 705 |
I

(G)
Lwid) -1 = wia |

1 ®
FORM I's COMPLEMENT

OF (TIA) AND FACH
TD CHARACTER

[s e] i©
I [(r14) =wia, (10)=wp]
16
FORM THE 10's COMPLEVENT| v enror
OF KOop-9 -
DIVISION
0 Flé. 3 THOMAS E. OSBORNE

FIG.5 STATE @

PATENTEDNOY 23 1671 3,623,156
SHEET 06 OF 31

| ©
| LRs wrk]

NO I YES
WDa)=0000 2

KE) ¢ (;E). |se7 ko5 10 mmus|
- wE I5
YES NO
’
B ©) ®
+00=WE | s wek]

| (KEo) +1 = KEo

—= £XIT

INVENTOR.
NORMAL IZATION THOMAS E. O0SBORNE

FlG.6

3.623,156

PATENTEDNOY 23 1971

07 OF 31

SHEET

£ Dl 0L LIXT -

- 4 i 22
! | I | , . X
, » , | L ZR
L xom=cogx) | [xom = Gny) | [ow=@mw+@n] [agx ss _ [om 53 €8
® ® 1 Gl @ z®
: LS}
1 2
“ wy y 32
ERNEAPRERTE S
ON . ;
|
0= E\x
S m) _
0=('M
ON m\)
SINIOd TvWY.
0078 190 SN o Ay 355
IM = (IM)-(3))
£ 914 QL LIXF CXIM N AIMSNY 1733907 = % YARTE
NOILY 1IWNIOY

YIINT

3,623,156

SINIT 553¥40Y

08 0F 31

SAIX @Q&m

INVENTOR

saniT Le-Jd® |®
SINIT LIGIIN —f—=

SHLET

PATENTEDNOY 23 1871

@ & 9/4
AV 1310
Qﬂ
m
SAFLSIDFY _ §Y3ILSIDFY @
\ G o — I ’
@ e | 405400 | SINIT A-r e S
d0H-g1 5 4074 417
P NN & _b L% INLLACIENS
.|\|\|\I\)
& 21907 aN¥ - 58 cyanyg
SYTNNG " NOLLOMLSNI @ o =1 vy
AAOWIN 11008 c¥700770
® ONIONINOIS INILNOIFNS \wmwm INILNOYENS
\ooogm
e iy
S i ® SINIT
NES S NN
‘@, @
€PN 20 €9
5oy 180T @ 21907
WAIA AYONIN aviy @] 19dINOD ® A7A
NVSA N0 S331711diWv 35N3S (D)) 771242 21901
AIMA JIONTA TN (D
® |
|

d7L531

THOMAS E. OSBORNE

2.623,156

PATENTEDNOY 23 137

09 OF 31

SHEET

—_——— — — — — — — — =

osr
osX
var
P

6 "9/4

INIT FNAG NOILINILSNI

4531

A+ %

JdINYa » d300234
INILNOYENS

INVENTOR.
THOMAS E. O5B0RNE

PATENTEDNOY 23 197 3.623,156
SHEET 10 OF 31

F43
/ F3_0\ / F30\\
IAS | IAS | IAS

Dy D; D4 D3 || IAS

Ds Dg Dg D7 IAS | TA5 | IAS | IAS \

e F32
/:5/ Es || Do | ~ | I4S | IAS | 1AS | IAS /

F33 |(r==-p---

- - | SR ——

Eo ~ [AS | IAS | IAS | IAS

‘\m/ \ F31 /

KARNAUGH MAP OF CHARACTER ENCODING
FlG_ 11

———
I
I\D
4
|
[}
[T Y
[

/ F40\

KBD | ANS | TMP | WRK

F4Z IMEM O|MEM |

‘\ F4l /
KARNAUGH MAP OF WORD ENCODING

INVENTOR.
FlG- 10 THOMAS E. O5B0KRNE

PATENTEDNOY 23 1971

3.623.1566

SHEET 11 OF 31
| -
1
/ 1® a0
@000/ : i |
YLCY @—/_—
| oL
! R R . |@oa00 }
|
, | f
: |
| S Y55T > o=
i
§: ' [1@ 0000
2 LIROR _
L sro_)
18 j001 ©uo 1 | Jsse
[veoM | [veom, ks, Kzﬂ: | [°
: /o//] - {@////1, ! 1/ I/
YRDM YROM, Y5AN]|
- i | | Cror D) (st0)
[/0/0j o) i‘
1® oou Sttt ‘
/ e — — . 9
L vywim]
1© 0/11
\YWTM, K42,K43]
CONTROL LOGIC
INVENTOR.

FIG_ 12

THOMAS E. OSBORNE

PATENTEDNOY 23 1971

3,623,156

SHEET 12 OF 31
FROM
51110
50
1
® o110
[1510{Wel] J24, K24)
_ [®o00 |
ICAL, Joi, J24,)46
EXP 50M
I~~~ 7oy
| [1RoR [WEI] K40,J32,1¢41] 51110
! 1@ooil 000G
I' {1RoR [wEe], 1£5¢, 10CF |
: ’@ ®i100
v {1510 {wEo], 108F |
! L a® g0i0 S
/ o O
| 1 0000 — T® o0l [e |
(1510 [wid], 123) (15T WIA], Jo3, IKBF] vy
! ["® nol
4 GY) | st (wl, 1c4l)
A ® 1
[1s70 [wi] , 1c4]]

SUBROUTINE ACCUMULATE

50000
FlG_ /3

L1510 [TIA), 43, J24,)40, 1C41 |

® olol

L

KBD = WRK
-

— /
R oY
ITRA]

P

INVENTOR.
THOMAS £. 0SBORNE

—

PATENTEDNOY 23 197)

3,623,156

LRS WRK FFF o001

SHEET 13 OF 31
SR A]
L_IsTo(r:), 1c40 |
Gl SUBROUTINE ~ MULTIPLY
50001
FIG. I4
~———0
7 ® o
LIRDR (KDs), lc41, IESF]
(CFF)-Ds
b y©oo0
ISTO (wi), J41,
IDCF | [KBF
1@ o/00 ‘
IRDR (TIA), J43,
J40, ICCF
(FF) = Do 1® Joio
- 1570 (TIA), J43,
I0BF, IDCF
(CFF)=DO_{
et B2 —>
IROR (TDs), J40, 11 CF g
*CE) 1ol ;@ 110
| 1510 (114), 143, 124, K51 ICAL , 1¢40,J01, ecF (1ICF]
ADD PFF 000!
— <2\2/‘ /- @ lsio_m_/___,
0 0 ® o101
i {
—] |_IRDR (WIA), J43, 1c41
® ot NO CARRY
@ <€fu_, Js0, LCio,_Jez_> T
PFF 0001
RSTMP SEF 100! CARRY ;@ 0000
;7 - | 1570 (W1A), 343, 118F [J41] |
{ @ 100}
<I;A_LLJ@ZJSJ,J_02_[@J

SFF 100

)

1 @ Jloo

[1570 (1D9), 1040, J41, 1JBF |
!

INVENTOR.
THOMAS E O5B0RNE

PATENTEDNOY 23 1971 3,623,156
SHEET 14 OF 31
]
(RORTRST. ¥45] SUBROUTINE SUM
[ROR[WS Ic@gl,l zgff] FlG. 15
0
(J50,K50)
@ 1000
L]
l
i
® 0001 ° O !
IeAL, Joo, J24 ICCF
ADD
L 0101
— © o, (TsT0wi], 1c41] fzgg“;; K
L STEmg ALKE CARRY
st ”"@' D
e @, . I570 (IRDR[KE], ICF)
N0 CARRY 3 = WA
@ o011
AL, 102, J24
COMPLEMENT
INVENTOR.

WTINE

THOMAS £ OSBORNE

PATENTEDNOY 23 197)

SHEET 15 OF 31

W4

@
[IDCF ,Ja1, K51]

.___o

SUBROUTINE A

50011
FIG. 16

- ® 110
['TRDR (ki) licF, 1c41 |
1© Jiol
E |

<5> | __CARRY

0 I18F

o

/

K5/

® oo

IRDR (W), ITBS,
1c4i, Jsi, K5l

| ‘; } 7-3 ALl TIBF
F————= " 00/0

|

|

[usr |

F————= 000
o [LIBF, 1570 (Wi)]
[

-—-— oooo]

L

e
DD

1
RETURN T0
LOCATION
DEFINED BY
TRANSFER

ECTOR

3,623,156

EXIT: (F51)= | IF CARRY

INVENTOR
THOMAS £. O5B0KNE

PATENTEDN0Y 23 1971

3,623,156

SHEET 16 OF 31
SUBROUTINE NORMALIZE ‘
5§0100 [[] @ 1)/ 1
IROR [TIA], J43,k32, 4
FIG.17 t® o1l
LIRDR [W1A], 43,k40,1E5E 51 |
© 1o
[1sTo(wiAL, 43, 1£5F]
a OVERELOW
r® ool Mo
LisTo[wi],)43, K24 | {ga;,;_o@go&hxy
o<EPXBD-<F> LR Rk
7 MPY ORACC ! ‘—"-j
DIVIDE ¢~ : ® ppoo
DIVIDE & MPY 0 acc | ISTOIWIA), 43, IKBE M |
1BF 118F)~ — A
® o101
: | 180 [W09], J41 |
: ® 1101
| TROR [WIA], J43,50,1ccF |
a oy
: ‘z @® otlo
| LISTO{WIA], 43, 11BF, IESF |
|
| —— e
| @ ! © 1000
® 1010 Listolwel], k24, 10CF)
_______ 1® 1001
LIsToWe,], 1cCF, K32
'® 0100
CONDITION we) | (ke) LIsrofKEo], 1c41]
overrLow € o Jolleol 00 1® 1100
QUOTIENT # 0 ol LISTO[Kei], IKBF, ICCF Jol, Koz
UNDERFLOW ¢ DIV ? T
OVERFLOW ¢ MPY OR ACL| » | +0I !
PRODUCT # O v00 o
UNDERFLOW - MPY | ™ 2
UNDER:{LL)O“S/HI;TSM;O'D — INVENTOR.
 SHFTS RGD = THOMAS E. O5B0RNE
10 SHIFTS RQ'D |+00 | +00
PRODUCT OR QUOTIENT=0 | 100 | +00

PATENTEQ¥0Y 23 1971

SHEET

<

3,623,156

17 0F 31

@ 411
[K32) sececr Dg
4 N
51 50 ::,]
0 0|-|Ls
o 1l-1ps
Col-ll s > SELECT REGISTER TO BE SHIFTED
F1l-{LRS]
L5 08 LLS @ RS OR LRS
0 R YK LKe
1® 1000 1@/0/0
I [ROR J GET Di [1CCF]
{© o010 E— (ORI
| IsTo, IESF, 1ICF] [1kOR, 1IcF]
570 Di+12 ‘ s |
‘zza) I@O @ P
4 7 LS
J43 J43
® o100 ® o011
[1ocr] [1570, 1E5F, IDCF |
¥® 1100 1@ 1011
[IocF] l 1ICF 1
-———0 e — o —<TM5D
+ ® o000 1 ® o001
[1570, 1k8F, 11cF] [1s10, IDCF, IKBF]
0-=Ds
(CFF) = 1000 ° @
o+ JAS
143)~
© o
IRTN, K32
INVENTOR

SUBROUTINE ~ SHIFT 50/01
FlG. /8

THOMAS " £. OSBORNE

PATENTEDNOY 23 1971

50110
!

@
J5| |

|
=

© /010

[1kor [Ls0], 1cc7 |

y® o411
|[ForM 95 comp]|

©oo1l

L1570, K51, J24, K24

F5] >0
/
Cuﬁﬁl
© Joi
| IRDR, LicF |

T0
CALLING
ROUTINE

SUBROUTINE COMPLEMENT

so10
FlG. /19

3,623,156

FROM |
51110

|1R0R, Ic40, Ica1,Jicr, 43

(IRDR, 1640, 1¢41, 11¢F |

. ;

-

F24

g
B
[1570, 24, K24 |

.

IcAL, kol
NORMALIZE

SUBROUTINE EXPONENT UPDATE

50110
FIG.20

INVENTOR
THOMAS €. OSBORNE

PATENTEDNOY 23 1871

3,623,156

SHEET 19 OF 31
S0/l
!

| @ j101 @ 1000
| @L_Kgo , K24, 54_0> ICAL, K0J, K40,J51, K50
f CMP KBD LLS WRK

-~ 1
| |

o <YBFZ

o ® 100/
| <Lcetlk_04 k40,132 ® i
I ADD \I570[TDs], IDBF, K24 |
| | @D o010
| \©g001 [IRDR [T0,], Ic40, I1CCF
!

|IRDR [WiA], J43, 1¢4] |
T

N

§ ©@oou
VAT a3 J

(ikDR[TM

® ol
|1STO[WIA], J43, IDBF |

1C40
B o0ilo

(ic40)

|
|
|
|
|
|
|
|

[15T0 [WIA), 43,11 CF, 141, JBF KBF |

0— —

&

|
|
|

/rﬂ

® 1oo

AzL q ,J54,K50,K24
TMP

t

|
|
-

SUBKOUTINE DIVIDE
S 01l

FIG_ 2]

-~) @?Jo—o““?

\1570[Wi], 140, J8F, KBF |

,

DR’[TL], | IDCF

Lo
——" ® ool
I

INVENTOR.
THOMAS E. OSBORNE

PATENTEDNOY 23 1971

SHEET

20 0F 31

[@ 0l0j

| [
lmon(f,}}j},m |

1570 (K), IESF,
K40, K41, J02

Ao

L.___'._._.__l

ceen
TO
DISPLAY

ROR WIA~a

3.623.156

(CFF)=Do+}

<G>

/

2> 1 —=(K00,k41,440)
{

ﬂ MEM OR 510

“1® o011
[[IRDR, J43]]

’@ ', oec ixep

k50)

1—<F23

@

MEM
o 5TO @ iy
/ 1@ 1010 IROR (ML), J42,
LIRDR (40), IDCF J40, k4] | IDCF, K41, [15T0)
TSN
| Isomi), J42] @o
<G>0 /
{ J40
K40 !
® ot
L1570 (k:), k40 [k50 ¢ £20])
o—— 0—YEZ)

/

/

!
- 391000

t___T___J

ESTABLISH PKE

<@

-~ o <BrL

[1570 (), 10cF, K41]

ISTO (WiA), J43, 41
IDCF , IESF

ORIl

2>

[1ROR (KDo), k4!, 10CF | GET KDg

[1RDR (K€,),10CF, IESF [15T0] |

1O 707
1570 (KE,), IICH,
1ESF, J5)

2

SUBROUTINE ENTER DiaiT
5100/

FlG .

22

b

] INVENTOR.

THOMAS E. OSBORNE

PATENTEDNOV 23 1971

SHEET

4

@
L1510 [KIA] k24, IKBF, J43)

3,623,156
21 0F 31

g

FINISHED TRACING

_,

8 0000
[IRDR, Ic40]

&G

) — <D

TRACE AN5

KEYING DELAY
ROUTINE

(

I ' < @00 Y8R~
IDOL 1DOR J24
DECODE 7

j @0/(

LIRDR [KIA], J43, 40]
1™)io
| STo[KIA], J43, IDRL }

NEG. SIGN
LEFT HALF %ECQ{DE !
| G

© loi

{IDRR, ISTD [MIA],J42 J43,J24)

RESTORE RIGHTA @ o _=—TRACE KBD

R
e
® /om 1
[DHD , IPHL

HOLD DOWN
HOLD LEFT/ ‘/ mrﬁc@”

1ACE
@ 1004 j

LIDRR, IDHD, STO[MIA], J42,43, 18RS |

0 ® 1000
LIDRR, IST0 (MIA], J47,J43, 18RS]

SUBROUTINE DISPLAY
51011

FIG_23

INVENTOR.
THOMAS E. OSBORNE

3,623,156

PATENTEDNDV 23 1971

22 OF 31

a

Lad
j g

S

' - e}
‘wmm‘, VN w\K o DNA
T 0011 § c 3
- dOLVAIIO DILINHLINY ININYTLIO INILOONENS &S
z W
_ Z o
10006 s % Wn
0L oL S
-r—- - - - — = ﬁl i - — " m
et — - R770G) N

LIp21°20X *€0X 00 |

/

1001 @ 2~
~

201"

~ '
~ |
}o@ - ‘ .
~ | -
A _

4941 () 0151

122 ~

-
r————" ==

| S

_
|
{ 010%

(5841) o

SEIPY s
\ \ ol &
év 0100 @14

osX

o
A

[g541%ebr (v1v) 0151 |

GoiT A~ T T~
mm.E ‘epr
X1 “(YIv) 0151

1% ‘lor
0000}~ 22V

>

1901 “beX
Y9X1 () 0181

o @b
x

EFZNTGE

1110 @V SNy =0

3,623,156

23 0F 31

SHEET

PATENTEDNOY 23 1871

$2°914 .8
& og
% 10116 c
i INIHOVW 40 31v1s INILNOYENS § 8
. ' Z
“imet T T
[o2r 0151 *3031] | <
X 06X ‘20X “lor =
o ® e)
; i I =
Clova] e
var* (233) Ei
@
W el
: ‘ /
| [opX] ©49)1 i e
DAY (Njoist| | f Qﬁ A/\ Toy]
i ® | [oig] ‘opx] (0671 “(I¥) 0lS]
| —<Z> _ 1921 m@%& 0101 G
- ! 0110 @}
[ogX]'05) 2 “12r ‘aar| | Lot "16] “v2x fopX] “per Lepr "oby
ZEC €0 (Y IM) 0151 _ ‘€720 crr(vim)01s] “Ebr(VIM) 0151 (V1Y) 0481]) 1921
1000 @b dX3 w 100! @b T 01S oo @b SHD 00i0 @k SNV
| , ! i
[0bX7°051 “b2X ‘1951 [Lotx] ‘ozr losx] *bzr ‘eor| ! Ibr 49X 0pX |
epr “(VIM) 0151 _ 2o 'spr (YIM) 0151 - €pr (vIm) 0451 Vo I'v2x eerttvim) 0us1 #
5000 O 233 ool 230 orek wiw | ool ggy |
r‘l[l\‘l_llllr!L ||||||||||| - = —_— . I |
fon ‘
100/6 | 10115
00l1s

PATENTEDNOY 23 1871

5000
i)

@ 1000
[1570 [1:],1C40, 1¢41]

SHEET 24 OF 31

5010
51110
3

@ 101/
L K32,liCF 140]

Do}
| 1570 [wi], 14t]
l*—*

l J4!]

[15T0[wd), 1c40,1c41 |

IROR (A, 11cF
o> 0——~
7 ®

0100

| 1ROk [kDs], 1640]
1® 0110
[

; ® ol
D’Dk [WEL] ITEA, J32,K50 |

70
samw 5&”
l

SUBROUTINE MB8
5110

FlG. 26

]

[1510 [klj,“!(e;o, 41]

o Wl
{ua k41,440, k32 |

K 1010
| 1510 [Ad], IC40,1¢41 |

l-———»

1ROR [Wi], IDCF

{ 1¢41 |

@ o001

-1
JRDR [n JICF

4@; a—

{Ooon
JOO Kol

70
sHot
/

3,623,156

(@0
[1570{1],1640,1¢41]

INVENTOR.
THOMAS E. O5BORNE

PATENTEDNDY 23 1971 3.623.156

SHEET 25 OF 31

pEc | (KD) Ewg @ 101

FIXED | =0 __1c40,1¢41, 332 |
(rs0) | Brz | (50

0 0 0 &42»0— e
0 ! J 7 1o
/ 0 ! I5T0(714), 443, J50,
/ ! 0 K50
(CFF) = 1100 © w0
1040, 1C41 | 1((F
LESF
(CFF) =101l
{® oill 0
{[RDR (KEp), [1570] 1 '
1 © o0l
L1570 (KE,), 118F]
(CFF)= Ey = 1011 ® o001l

IROR (T14), Ic40
[C41, J43,)32

(cFF) =17 {® o001
LIST0(T14),J43,1/8F]

(CFF) =17 ®po00
|_118F, HeF]

.

/

(LK1, Koz)

SUBROUTINE DIGIT ENTRY POSITION

INVENTOR.
FIG.27 THOMAS E. 05BORNE

PATENTEDxOY 23 1971 3,623,156
SHEET 26 OF 31

@ 100!
| 1570 (10), IDCF, K24]

E—

/

553 SUBROUTINE EXPONENT UPDATE
C;D DIVIDE INITIALIZATION
® ol00 S
1570 (TDy), IICF,
[118F, 1JBF] FlG. 28

(o o010

IRDR (KDs), IC40, IC41,
ICCF | [IESF]

1® o110

IRDR (WDs), IC41,
IESF, [1JBF]

+ BY ZERO

4
1 ® 1ioo ® 1000

1570 (W1A), J43,
IKBF, [J50] [K24,1DCF, IKBF]

s .

/ 0

((J24,Kz4) KOl

@ y)01
ISTO (TDg), (40, K03, @
[J50]

-——— = = = - - —

INVENTOR.
som THOMAS E. OSBOKNE

PATENTEDNDY 23 1871 3,623,156
SHEET 27 OF 31

?vcc
L@ L@ @L L@

S0k’ K" Ok R
INPUT INPUT
® oy @ o) @
® ® T ®T @ ®
CLOCK INPUT CLOCK INPUT
EO0R 0" \l >< b F oR "1
oUTPUT (I |‘j© OUTPUT
1
FLIP FLOP
FIG- 29 ;to |tl |t2 |t3 |t4 !
STaRT JINPUT (CuRRENT)] L L [1L
! ~ —_ —g K INPUT (CORRENT) o [L U L
5 /;R, FoourpuT frouts)e—° /" 1 L2 /1)
1 — FlG.29 "’
32 1
: / [| /
|) ' r J/
| / / |
| f NUMERICS GENERATED WITH CASCADED “E" TRACES
S —— Fla. 3/
o INVENTOR.

wpn THOMAS E. OSBORNE
£ TRACE

FiGg. 30

PATENTEDNOY 23 1871 3,623,156
SHEET 28 OF 31

1200 v
Q- @} —————= LEFT
IDHL = IDRL
@/
©

J') 2.2V

LEFT DEFLECTION CIRCUIT
FlG.32

+1200 V
02—V Y
IDHD & :_:_;‘__o IDRD
@/I g >l (e

(]B +2.2V

DOWN DEFLECTION — CIRCUIT
FlG_ 33

+1200 V

€.

———® RIGHT

IDRR
@

zzv INVENTOR.
RIGHT DEFLECTION CIRCUIT THOMAS E. OSBORNE

FlG. 34

PATENTEDNOY 23 1971 3,623,156
SKEET 29 OF 31

LEFT RIGHT DOWN

[1]

+1200vea——t——'v* - T-T & 04
$—AR —® DJ3
L L — —) B, §)
r»«—'v\—— —© DJI
- ——® 62,64
15 VoLTs
o——2 G/
- FOCUS @ 63
———@ K
) GND
, L
+24V H H
BIASING CIRCUITS - 3RP]
FilG. 35
o OUT
¢

VCOZ

tON i et OFF —mm

1@y (DUE 10| Ly MLN\/\ INVENTOR.
G + THOMAS £ 0SBORNE

FlG.37

Itx |

PATENTEDNOY 23 1871

® vee

YNZE

SHEET 30 OF 31 _
S I N QX J
<r (- . | < O
=z =z = = =
=] [+] o T o
ifg[*"'
A N e -
. a " N N b R
AN \‘& «‘K %, iy O_M X
AL b P [i L
»——'V\M‘- . \k ot (W
. e D __i . ‘,_?_
‘ 2 >4 | gI5
s o [t |
2 agx
| b, [T 08
! —1 (0¥
o=t |-20¥
Ap qu \q“ 2.2 9
AN &)'s \q\ 1—00-__°—< 7;70
1 R SNV
L Al
pia BN Sl
p iy dgxX3
" \ik L—::;4 aé;
AN - é ,g\
&'s NeLE
) v
> =2
>,

3,623,156

CIRCUITS AND ENCODING
FlG. 38

KEYBOARD

INVENTOR

THOMAS E. OSBORNE

3.623,156

31 0F 31

SHEET

PATENTEDNOY 23 187

® *
v 45
wwmx."&\%@l; J40LS
® ,
¥ SSA ‘I.e\\o@l‘ A

—
W
)
=0
@
®
-
wy
—
0
2
"

NNYA

NOAN -

$30010 9NILAIHS 132377 WW

1w
TUNOILIOND))

Ogh

6¢ Dl
431571
_|Illl» ||||| 1
| f
_ @ : _
_ ,®
_ @ |
| . ~
_ 104 @w _
“ 1 _
@ %l o |
| Y A _
| @@ |
& |
L ®- “
_ . 2

e J

INVENTOR.
THOMAS £ OSBORNE

ANl

3,623,156

1

CALCULATOR EMPLOYING MULTIPLE REGISTERS
AND FEEDBACK PATHS FOR FLEXIBLE SUBROUTINE
CONTROL

CROSS-REFERENCE TO RELATED APPLICATION

This is a divisional application of U.S. Pat. Application Ser,
No. 559,887 filed on June 23, 1966, by Thomas E. Osborne
and issued on Feb. 23, 1971, as U.S. Pat. No. 3,566,160 enti-
tled SIMPLIFIED RACE-PREVENTING FLIP-FLOP HAV-
ING A SELECTABLE NOISE IMMUNITY THRESHOLD.

This invention relates to an electronic desk top calculator
and to certain subcombinations therein which are useful in
electronic top desk calculators and larger calculators of the
data processing computer type.

One form of electronic desk top calculator is illustrated and
described in detail herein. This calculator is provided with
subroutines for performing the standard arithmetic operations
of addition, subtraction, multiplication, division, exponential
functions, and cumulative operations involving these specific
operations and is readily adapted for performing additional
operations. The calculator includes a keyboard for entering
data, a random access memory for storing data, an output dis-
play for indicating the results of calculations performed by the
calculator, apparatus including a plurality of flip-flops for con-
trolling the operation of the calculator, and a multiterminal
connector including a plurality of electrical conductors elec-
trically connected to the outputs of a majority of these flip-
flops. A tester for use with this calculator is also illustrated and
described in detail herein. As will be apparent hereafter, the
principles of the invention may be employed in calculators
other than the specific electronic desk top calculator illus-
trated herein.

The objects and advantages of the invention will be ap-
parent from the following description of an electronic top
desk calculator and a tester for use therewith read in conjunc-
tion with the attached drawings in which:

FIG. 1 is a diagram illustrating the manner in which the cal-
culator operates in response to operand (digit entry) keys;

FIG. 2 is a diagram illustrating the manner in which the cal-
culator operates in response to control operator keys;

FIG. 3 is a diagram illustrating the manner in which the cal-
culator operates in response to arithmetic operator keys;

FIG. 4 is a diagram illustrating the manner in which the cal-
culator operates in response to the multiplication key;

FIG. 5 is a diagram illustrating the manner in which the cal-
culator operates in response to the divide key;

FIG. 6 is a diagram illustrating the manner in which the cal-
culator normalizes numbers;

FIG. 7 is a diagram illustrating the manner in which the cal-
culator operates in the response to the accumulate keys;

FIG. 8 is a block diagram of the electronic circuits em-
ployed in the calculator;

FIG. 9 is a schematic diagram of typical circuits employed
in the calculator to execute logic functions by power
switching;

FIG. 10 is a Karnaugh map illustrating the memory ad-
dressing arrangement employed for addressing each word in
the core memory of the calculator;

FIG. 11 is a Karnaugh map illustrating the memory ad-
dressing arrangement employed for addressing individual
characters within each word in the core memory of the calcu-
lator;

FIG. 12 is a detailed flow chart of the control logic of the
calculator;

FIG. 13 is a detailed flow chart of the accumulate subrou-
tine;

FIG. 14 s a detailed flow chart of the multiply subroutine;

FIG. 15 is a detailed flow chart of the sum subroutine;

FIG. 16 is a detailed flow chart of the add subroutine;

FIG. 17 is a detailed flow chart of the normalize subroutine;

FIG. 18 is a detailed flow chart of the shift subroutine;

FIG. 19 is a detailed flow chart of the complement subrou-
tine;

5

20

25

30

35

40

45

50

55

60

65

75

2

FIG. 20 is a detailed flow chart of the exponent update
subroutine;

FIG. 21 is a detailed flow chart of the divide subroutine;

FIG. 22 s a detailed flow chart of the enter digit subroutine;

FIG. 23 is a detailed flow chart of the display subroutine;

FIG. 24 is a detailed flow chart of the subroutine used for
determining arithmetic operators;

FIG. 25 is a detailed flow chart of the subroutine used for
determining the state of the machine;

FIG. 26 is a detailed flow chart of the MBB subroutine used
for miscellaneous matters;

FIG. 27 is a detailed flow chart of the subroutine used for
determining the position of entered digits;

FIG. 28 is a detailed flow chart of the subroutine used for
updating exponents and initiating the first portion of the divi-
sion process;

FIG. 29 is a schematic diagram of one of the flip-flop cir-
Cuits used in the calculator;

FIG. 29’ is a waveform diagram illustrating the flip-flop cir-
cuit of FIG. 29;

FIG. 30 is a diagram of the trace
cathode-ray tube of the calculator;

FIG. 31 is a diagram illustrating how decimal numbers are
displayed from the trace pattern of FIG. 30;

FIG. 32 is a schematic diagram of the left deflection circuit
for the cathode-ray tube;

FIG. 33 is a schematic diagram of the down deflection cir-
cuit for the cathode ray tube;

FIG. 34 is a schematic diagram of the right deflection circuit
for the cathode-ray tube;

FIG. 35 is a schematic diagram of the biasing circuits for the
cathode-ray tube;

FIG. 36 is a schematic diagram of the clock source used in
the calculator;

FIG. 37 is a waveform diagram illustrating the operation of
the clock source of FIG. 36;

FIG. 38 is a diagram of the keyboard encoder employed in
the calculator; and,

FIG. 39 is a schematic diagram of a removable tester used to
test and service the calculator.

pattern on the output

GENERAL OPERATION

The machine illustrated in the attached drawings can be di-
vided into three logical sections — an input section, an output
section, and a processor.

The input section consists of a manually operated keyboard
containing 23 data keys and a diode encoding matrix to
generate a unique five-bit code when each key is operated.

The output section consists of a cathode-ray tube (CRT)
and the associated circuitry necessary to display the contents
of two registers contained within the processor. The contents
of the two registers are displayed as two lines of decimal nu-
merals with the two lines arranged in upper and lower posi-
tions. The register occupying the lower position on the CRT is
the keyboard, or KBD, register. It displays the current numer-
ic input data. The contents of KBD are not altered, except for
asign change under circumstances to be described later, when
arithmetic operations are executed. The upper position of the
CRT display contains the contents of the answer, or ANS, re-
gister. ANS always contains the answer to the jast arithmetic
term processed. Each of the ANS and KBD registers is stored
in memory and displayed on the CRT as a 10-decimal digit
number (hereafter called the mantissa) having a decimal point
located between the most significant and second most signifi-
cant digits. The mantissa is followed by two decimal digits,
called the characteristic, which locate the true decimal point
of the number relative to the normalized position it occupies
in the mantissa. For example, the number 0.0125 is displayed
as 1.250000000 —02. Thus, the smallest positive number
which can be displayed is 1.000000000x 10" The largest
positive and negative numbers which can be displayed are
*9.999999999y7 | 0%,

3,623,156

3

The processor contains logical elements common to digital
computers, i.e., flip-flops, gates, etc., a random access core
memory, and means for receiving information from the input
section and sending signals to the output display section.

With this general background, the operating characteristics,
i.e., response to input data, can be described. Input data is
grouped into two distinct categories, namely operands and
operators. The operands consist of the decimal digit entries
zero through nine. The operators are divided into two sub-
groups, namely control operators and arithmetic operators.
The control operators are defined as ERR (error), EXP (ex-
ponent), ANS (answer), CHS (change sign), MEM (memo-
ry), STO (store), KBD (keyboard) and DEC (decimal point).
The arithmetic operators are ACC O(accumulate 0), ACC
+(accumulate +), ACC—{accumulate ~), X(multiply), and
+ (divide). '

The ERR control operator clears the keyboard to normal
zero, e.g., a zero mantissa with a zero characteristic.

When an operand digit entry follows an arithmetic operator
or an ERR, ANS, or KBD control operator, the processor
recognizes the operand as the most significant digit of a new
data entry, clears the mantissa and characteristic of KBD to
zero, and enters the operand into the KBD register as the most
significant digit of the mantissa. The processor will not enter a
digit into the second most significant position of the mantissa
until a nonzero digit operand entry is placed in the most sig-
nificant position of the mantissa.

The DEC (decimal point) control operator provides suffi-
cient information to the processor to determine the proper
digits and sign of the characteristic. Thus, each digit entry
operator after the first not only enters the digit in the KBD
mantissa, but also increments the KBD characteristic until the
decimal point control operator is operated. For instance, the
number 632.14 is entered in KBD by six key operations as fol-
lows:

KEY OPERATIONS CRT DISPLAY OF KBD

— 0.000000000 00

6 6.600000000 00

3 6.300000000 01

2 6.320000000 02
decimal point 6.320000000 02
1 6.321000000 02

4 6.321400000 02

When a decimal point entry follows an arithmetic operator, or
an ERR, ANS, or KBD control operator, the processor recog-
nizes the decimal point as the first entry of a forthcoming
operand and clears the KBD register to zero. A decimal point
control operator is not required when entering integers. When
the initial key of an operand is the decimal point, successive
operand keys decrement the characteristic of KBD until a
nonzerc number has been entered in the most significant posi-
tion of the KBD mantissa.

The EXP control operator informs the processor that the
characteristic of the KBD register is to be changed. The
processor responds by clearing the characteristic of the KBD
register to zero. When operand digit entries follow the EXP
control operator, they enter (modulo 100) into the charac-
teristic of the KBD register. The EXP feature allows the
characteristic of an operand to be altered without changing
the mantissa. It also allows the user to enter operands with
large negative or positive exponents without inserting leading
or trailing zeros. For example, Avogadro’s number (6.02x10?
3y can be entered into the KBD register by six key operations
as follows:

KEY OPERATIONS CRT DISPLAY OF KBD

6 6.000000000 00
0 6.000000000 01
2 6.020000000 02
EXP 6.020000000 00

5

15

20

25

30

35

40

45

50

55

60

65

70

75

2 6.020000000 02
3 6.020000000 23

The CHS control operator changes the mantissa sign unless
the preceding control operator was an EXP in which case the
characteristic sign is changed. Additional CHS control opera-
tors cause repeated sign changes. When the CHS control
operator follows an arithmetic operator or an ERR, ANS, or
KBD control operator, the sign of the KBD register is changed
as stated above. However, if an operand digit entry or a
decimal point follows the CHS control operator, the processor
recognizes the CHS control operator as a signal implying that
a new negative mantissa is going to be entered into the KBD
register. The processor responds by affixing a negative sign to
the mantissa when the decimal point control operator or the
first operand digit is received. In other words, the negative
sign may be affixed to the mantissa of KBD entry prior to en-
tering the first digit of the mantissa, or at any time following
the entry of the first digit of the mantissa.

An operand entry is also used to define auxiliary storage re-
gisters within the processor. When an operand entry follows a
STO control operator, the contents of the ANS register are
sent to the auxiliary storage register defined by the operand,
e.g., STO followed by 4 results in the contents of AND being
sent to auxiliary storage register number 4. When a MEM con-
trol operator is followed by an operand entry, the contents of
the auxiliary storage register defined by the operand digit are
transferred into the KBD register. The contents of the source
register remain unaltered in either process.

The ANS control operator transfers the contents of the
ANS register into the KBD register. The contents of the ANS
register remain unaltered by this process. This allows answers
of previous arithmetic terms to be used as factors of new
terms.

The KBD control operator provides a new user with con-
tinuity in performing arithmetic operations. It is used to simu-
late a transfer of the contents of the KBD register into the
KBD register. The usefulness of this operator is discussed later
in the detailed description of FIG. 2.

When the arithmetic operator preceding an ACC 0
arithmetic operator was an ACC 0, ACC +, or ACC —, the
contents of the ANS register are set to normal zero, and the
contents of the KBD register are algebraically added to the
contents of the ANS register. In effect, the contents of the
KBD register are transferred into the ANS register.

When the arithmetic operator preceding an ACC +
arithmetic operator was an ACC 0, ACC +, or ACC —, the
contents of the KBD register are algebraically added to the
contents of the ANS register. The sum appears in the ANS re-
gister and the contents of the KBD register are unchanged.

When the arithmetic operator preceding an ACC —
arithmetic operator was an ACC 0, ACC —, or ACC +, the
sign of the KBD register is changed and the new contents of
the KBD register are algebraically added to the contents of the
ANS register. The sign of the KBD register is changed by the
process. Note that if a second ACC — arithmetic operator is
executed, the original contents of ANS and KBD will be
reestablished. Thus, it is possible to restore the contents of the
ANS register by executing two consecutive ACC — arithmetic
operators.

When the arithmetic operator preceding a X arithmetic
operator is an ACC 0, ACC —, or ACC +, the processor
defines the contents of the KBD register as the multiplicand of
a forthcoming product. As explained below, the contents of
KBD are defined as the multiplicand by transferring the con-
tents of KBD to a third register called the working register
(WRK) without changing the contents of KBD.

When the arithmetic operator preceding a X arithmetic
operator is a X, the processor algebraically multiplies the
previously defined multiplicand times the contents of the KBD
register and identifies the product as the multiplicand of the
forthcoming product.

5

When the arithmetic operator preceding a arithmetic
operator is an ACC 0, ACC —, or ACC +, the processor
defines the contents of the KBD register as a dividend of a
forthcoming division.

When the arithmetic operator preceding a arithmetic
operator is a X, the processor algebraically multiplies the con-
tents of the KBD register times the previously defined mul-
tiplicand and defines the product as the dividend of the
forthcoming division.

When the arithmetic operator preceding a arithmetic
operator is a , the processor algebraically divides the previ-
ously defined dividend by the contents of the KBD register
and identifies the quotient as the dividend in the forthcoming
division.

When the arithmetic operator preceding a X arithmetic
operator is a , the processor algebraically divides the previ-
ously defined dividend by the contents of the KBD register
and identifies the quotient as the multiplicand of the
forthcoming product.

When the arithmetic operator preceding an ACC 0
arithmetic operator is a X, the processor changes the ANS re-
gister to normal zero, then algebraically multiplies the con-
tents of the previously defined multiplicand times the contents
of the KBD register and their product is algebraically added to
the contents of the ANS register. In effect, the product is
placed in the answer register.

When the arithmetic operator preceding an ACC +
arithmetic operator is a X, the contents of the KBD register
and the previously defined multiplicand are algebraically mul-
tiplied and their product is algebraically added to the contents
of the ANS register.

When the arithmetic operator preceding an ACC —
arithmetic operator is a X, the processor first changes the sign
of the KBD register, then forms the algebraic product of the
previously defined multiplicand and the contents of the KBD
register, and algebraically adds their product to the contents
of the ANS register.

When the arithmetic operator preceding an ACC 0
arithmetic operator is a , the processor changes the ANS to
normal zero and then algebraically divides the previously
defined dividend by the contents of the KBD register and their
quotient is algebraically added to the ANS register. In effect,
the quotient is placed in the ANS register.

When the arithmetic operator preceding an ACC +
arithmetic operator is , the processor algebraically divides the
previously defined dividend by the contents of the KBD re-
gister and algebraically adds the guotient to the contents of
the ANS register.

When the arithmetic operator preceding an ACC —
arithmetic operator is , the processor first changes the sign of
the KBD register, then forms the algebraic quotient of the
previously defined dividend and the contents of the KBD re-
gister and algebraically adds the quotient to the contents of
the ANS register.

This mode of operation allows the user of the calculating
machine to form of the answer to any arithmetic expression
made of terms containing factors of the form (N, @XN;X...xN,
/D, XDy X...XD;) by following each term with either ACC —or
ACC + depending upon whether the algebraic sign of that
term is negative or positive respectively. Moreover, each mul-
tiplier is preceded by a X arithmetic operator and each divisor
is preceded by a arithmetic operator. Those and only those
arithmetic operators required to uniquely define the problem
are used. This differs from other calculating systems which
require intermediate transfers or extra arithmetic operators to
accomplish the same type of problem.

It is also important to notice that the arithmetic notation dif-
fers from the Lukasiewicz (Polish) notation, often called **-
Parenthesis free" notation, in that the X arithmetic operator
precedes the multiplier instead of follows it. Similarly the
arithmetic operator precedes the divisor instead of following
it. This feature assists the user because the X and arithmetic
operators precede the multiplier and divisor respectively when
written in standard arithmetic form.

3,623,156

20

25

30

35

40

45

50

55

60

65

70

75

6

The arithmetic notation also differs from the parenthesized
notation commonly used in digital computer compilers such as
FORTRAN and the electronic calculating machines marketed
by Mathetronics, Inc., in that none of its arithmetic operators
can be shown to be uniquely equivalent to the open or closed
parenthesis.

GENERAL SYSTEM

The calculator contains a memory consisting of four work-
ing registers and 10 or less auxiliary storage registers with each
register consisting of 13 characters of five bits each. The
working registers are defined as WRK (working register),
TMP (temporary register), KBD (keyboard register) and ANS
(answer register). The auxiliary registers are defined as MEM
0, MEM1,.. MEM 9. Ten of the 13 characters in each register
are used to store the mantissa. These mantissa characters are
defined as Dy, Dy, D;,...D, with D, being the most significant
digit (MSD) and D, the least significant digit (LSD). Two of
the remaining three characters, E, and E,, are used to store
the most significant and least significant digits of the charac-
teristic. The remaining character, defined as IA, is used for
storing intermediate results of computations and control infor-
mation.

Each character consists of five bits, B,, B;, B;, and B, and
B,. These characters are stored in standard 8-4-2-1-BCD
code with B, and B, being the most significant bit (MSB) and
least significant bit (LSB) respectively. B, of D; and E, hold
the signs of the mantissa and characteristic respectively.

The core memory uses the word access storage system
described by FIGS. 4.1, 4.3, 8.2¢, and 8.15a of the book
Square Loop Ferrite Circuitry by C. J. Quartly (lliffe Books,
Ltd., London). A memory cycle, similar to that in an IBM 704
digital computer, is used; thus, reading out of memory
becomes a nondestructive process while writing into memory
is a destructive process.

Five flip-flops (the bit flip-flops or BFF) are used to hold
both the character read out of memory and the one to be writ-
ten into memory. The bit flip-flops are also connected to logi-
cal circuitry allowing them to be incremented or decre-
mented. Incrementing occurs in the four LSB (B,, B,, B,, B;)
only and is cyclic 0 through 9 in 84-2-1 BCD code. When
the contents of BFF are incremented from 9 decimal (1001 bi-
nary or 11 octal) to O decimal, a signal is given to set a carry
flip-flop to a 1" condition. Decrementing the BFF results in
the four LSB being reduced by one count in straight binary
fashion. Decrementing zero causes 1111 binary (17 octal) to
appear in the four LSB of the BFF.

Any character in memory can be selected by inserting its
address into flip-flops used to identify one of the 13 character
locations and any one of the 14 registers. (Quartly, IBID.)

To facilitate the detailed system description, the following
conventions are used:

1. Individual characters in memory are referred to by prefix-
ing the character identifier with the first letter of a working re-
gister or an M, for the ™ auxiliary storage register. For exam-
ple, KDy, AE,, and WIA refer to the MSD of the KBD mantis-
sa, and LSD of the ANS characteristic, and the |A character of
WRK respectively.

2. The sign of the mantissa and characteristic are identified
by suffixing the D or E identifiers by the letter S. Thus, the
KBD mantissa sign becomes KDS (which is contained in K Dy
B,) and the ANS characteristic sign becomes AES (which is
contained in A E, B,).

3. The entire mantissa or characteristic is referred to by
prefixing the letter D or E, respectively, with the ap-
propriate register identifier. For example, the mantissa of
ANS becomes AD and the characteristic of TMP
becomes TE.

4. When parentheses enclose a register identifier, they sym-
bolically imply ““the contents of.”* This notation is used to
differentiate between the address of a memory area and
the information stored in the address. For example, the
symbol (KD) means the contents of the KBD mantissa.

3,623,156

7

5. The arrow, —, replaces the words *gointo.”

Some rudementary operations may be described with this
symbolic language and will help explain the detailed system
operation.

Suppose the contents of KD, are to be incremented by one
count. The logical operations would be to set the address flip-
flops to KDy, execute a read cycle, increment the BFF, and ex-
ecute a store cycle. These operations are symbolically stated
as (KDg) +1— KDy which reads “‘the contents of the address
KDy, plus one, go into KDy.” Similarly, if the contents of WE,
are to be transferred to TE,, the apparatus includes control
sequencing to select the address of WE,, execute a read cycle,
select the address of TE,, and execute a write cycle. This is
written symbolically as (WE,) — TEg which reads ‘‘the con-
tents of the address WE, go into TE,."

All of the detailed logical characteristics of the calculating
machine will be described by using symbolic language, similar
to the preceding sample expressions. Proper time sequencing
of the logical operations is given by placing the symbolic ex-
pressions in flow charts (IBM Form A22-6503-2, pp. 31, 33).
The flow chart is a particularly convenient means for describ-
ing the system logic for two reasons: (1) translating informa-
tion from a flow chart into logical design set-reset equations is
a process well-known to logical designers, and (2) the logical
equations and/or circuit diagrams are voluminous, making it
difficult to understand the system operation without the aid of
the flow charts.

By using the random access capabilities of the memory
system, the contents of ANS and KBD are displayed on a
cathode-ray tube employing deflection circuitry and logic
described below. The resultant two line display has the con-
tents of ANS displayed above the contents of KBD. From left
to right, the characters displayed are mantissa sign, Dy,
decimal point, D,, D,, Dy, Dy, D,, D3, Dy, D,, D,, blank,
characteristic sign, E,, and E,. Positive signs are implied by no
sign at all, while negative signs are displayed in their conven-
tional form. The characteristic locates the decimal point rela-
tive to its displayed position. As an example, the number —112
is displayed as —1.120000000 02. The number zero is dis-
played by having all characters set to zero. Signs of the charac-
teristic or mantissa can be either positive or negative when dis-
playing zero.

All information enters the processor via 23 manually
operated keys. Logically, these keys are organized into three
groups: (1) operands —0, 1,2,3.4,56,7.8, and 9; (2) control
operators—ERR, EXP, ANS, DEC, CHS, MEM, STO, and
KBD: and (3) arithmetic operations —X, , ACC 0, ACC —,
ACC +. Each of the keys is encoded into a unique five-bit
code by a diode encoding matrix.

The MSB, B,, of the encoded signal differentiates between
operators and operands. The four LSB of each operand code
encode the operands in straight 84-2-1 BCD code.

An information line enters the processor from the keyboard
indicating that a key is down. This signal commands the
machine to exit from the display routine and to begin
processing new data. A detailed analysis of the operand entry
routine follows:

PROCESSING OPERANDS

When an operand key is depressed, the processor reads
WIA to obtain the State of the Machine (SOM). This informa-
tion will tell the processor whether the operand is a character
of the KBD mantissa, a character of the KBD characteristic, or
an auxiliary storage register address. The pertinent states of
the SOM as they appear in WIA are given below. Dashes in-
dicate don’t care conditions.

SOM=00000. This encoding identifies a *‘Positive Keyboard
Entry' or PKE. It directs the processor to zero the KBD re-
gister and to enter the operand into KD, as a positive number.

SOM=10000. This encoding identifies a ‘‘Negalive
Keyboard Entry'’' or NKE. It directs the processor to zero the
KBD register and to enter the operand into KD, as a negative
number.

20

35

40

50

55

60

65

70

75

8

SOM=01—. This encoding informs the processor that the
STO key has preceded the operand entry. The operand key
depressed defines the address of an auxiliary storage register.
As a result, (ANS) — M, where i is the operand key actuated.
Note: on any interregister transfers, only the characteristic
and mantissa along with their signs are transferred. The 1A
characters do not transfer.

SOM=]1—. This encoding informs the processor that the
MEM key has preceded the operand key. The operand key
defines the address of an auxiliary storage location. As a
result, (M,;)— KBD.

SOM =—011—. This encoding directs the processor to put
(KEy) —KE, and to enter the operand into KEj.

SOM=—01-0. This encoding informs the processor that the
position of the decimal point has not been fixed.

SOM=—01—1. This encoding informs the processor that the
position of the decimal point is fixed.

SOM=—010—. This encoding directs the processor to enter
the operand into the proper KBD mantissa character location.
The address of the proper location is stored in TIA and is up-
dated each time a new operand is entered.

The flow chart covering the proper response to operand
keys is shown in FIG. 1. Throughout various FIGS. in the flow
charts, certain states are referred to by letter references in the
FIGS. In this description, the letter references are prefaced by
the number of the FIG. in which the reference appears. In
state 1A, the SOM is obtained from WIA. If the SOM is a PKE
or NKE, signifying a new mantissa entry, zero is stored into
TIA, states 1B and 1C, thereby initializing so that the operand
will be stored in KD, as directed in L. After initializing TIA,
the KBD register is cleared to positive zero, 1D, if PKE or to
negative zero, 1E, if NKE.

Following the PKE or NKE zeroing, the SOM is updated to
00100 if the operand key actuated was not a zero, 1G. The
SOM is left at PKE or NKE if the operand key was a zero key.

The logic directing control to 1H determines that the
characteristic should be incremented by one count. This logic
allows the processor to assign the proper exponent to integers
and decimal fractions.

The operand is stored into the proper mantissa character by
the logic provided in 1K and 1L.

The SOM directs the processor to enter the operand into
the KBD characteristic in states IM and IN.

When the SOM directs control to LP or 1Q, the auxiliary
storage features are put into effect. State 1R sets the SOM to
PKE.

PROCESSING CONTROL OPERATORS

FIG. 2 shows the processor response to control operator
keys. Each of the eight unique control operator codes directs
control to one of the eight entrances shown.

In state 2A, (ANS)-— KBD. This allows the answer of a
previous term o be used as a factor in a new term. State 2B
establishes a PKE condition in SOM. The KBD control opera-
tor is not required for proper machine operation. Its purpose is
to give continuity to operations using the (KBD) as factors in a
computation. For example, a term can be cubed by either of
the following methods: (1) enter factor, followed by the X,
KBD, X, KBD, and ACC 0 operation keys; (2) enter factor,
followed by X, X, and ACC 0. The inexperienced operator ap-
preciates the continuity of the first method where the struc-
ture has operands and operators alternating. The experienced
operator will prefer the second method because it involves
fewer key operations.

In states 2D and 2E, the sign of KES and KDS are changed,
depending upon the SOM. If the SOM is PKE in 2C, it will be
changed to an NKE. This operation in effect prepares the
machine to enter a negative mantissa if the next key depres-
sion is an operand (state 2E, FIG. 1) or a decimal point (state
21,FIG. 2).

States 2F and 2G update the SOM to recognize the next
operand as an auxiliary storage address. (Refer to FIG. 1,
states 1P and 1Q).

3,623,156

9

In states 2L and 2J, the processor zeros KE to minus zero
and zeros KD to plus zero for PKE or minus zero for NKE. In
state 2H, it then updates the SOM to a *“decimal fixed” (1—
B,) and “‘enter digit” (1—B,) state.

When an EXP control operator occurs, state 2M, the SOM
is updated to enter further operands into KE (FIG. 1, states
IM and IN) and zeros KE to positive zero in state 2N.

In state 2P, the ERR control operator directs the processor
to set the SOM to PKE. The KBD register is then cleared to
positive zero in 2Q,

PROCESSING ARITHMETIC OPERATORS

The method of processing arithmetic operators is shown in
FIG. 3. Two new symbolic abbreviations are introduced in this
section. The arithmetic operator causing control to be sent to
the arithmetic operation section is defined as the New
Arithmetic Operator, abbreviated as NAO. The Previous
Arithmetic Operator, abbreviated as PAO, occupies AlA.
Notice that the NAO of any arithmetic operation becomes the
PAOQ for the next arithmetic operation when an arithmetic
operation is complete, state 38. The fact that the processor is
able to recall the previous arithmetic operation allows the
multiply and divide operators to precede all multipliers and
divisors. This differs from the Lukasiewicz or parenthesis free
notation which requires the multiply or divide operator to fol-
low the multiplier or divisor.

When control enters state 3A, the ANS register is zeroed. If
control is then routed through 3G to 3N, 3P, 3Q, 3R, 3S and
3T, the processor accumulates the zero in the ANS register to
the (KBD) and places that result in ANS, ie., (ANSyHKBD)—+
ANS. Since the ANS was zeroed in 3A, the effect is that
(KBD)—ANS. When control is routed from state 3A through
3E or 3F to the remaining states, the product or Quotient
formed is accumulated to (ANS). This results in the product
or quotient appearing in ANS.

When control enters 3G as a result of an ACC +, the proces-
sor responds by (ANS)+ KBD)— ANS. If the ACC + opera-
tor sends control to 3E or 3F, the resultant product or quo-
tient is accumulated to the (ANS). The result is (ANS) +
product or quotient ANS.

The ACC — arithmetic operator causes control to g0 to state
3B where the sign of KBD is changed. The resultant arithmetic
computations are identical to those resulting from the ACC +
operator except that (ANS)—(KBD) — ANS when control is
routed through 3G and (ANS) — product or quotient — ANS
when control is given to 3E or 3F. Note that KDS remains
changed after passing through 3B.

State 3C enters multiplicands and dividends into the WRK
register.

In suate 3E (KBD)X(WRK) — WRK. In state JF,
(WRK)/(KBD)—WRK. For a detailed description of the mul-
tiply and divide operations, the see “Multiplication’ and *-
Division™ sections which follow.

States 3G and 3H save the KBD register in TMP, thereby
freeing KBD for other purposes.

The “raw characteristic™ of a product or quotient is formed
in 3J or 3K. The raw characteristic is simply (KEyH WE)—
WE for products and (WE)~(KE)-»WE for quotients. If a
product results in an overflow, i.e., the product of two normal-
ized mantissas is greater than or equal to 10, the raw charac-
teristic must be incremented one count to obtain the true
characteristic, and the product must be normalized by shifting
it one position to the right. Correspondingly, if a quotient
overflows (the division of two normalized mantissas resulted
in a quotient greater than or equal to one), the true charac-
teristic anc the quotient must be shifted one position right to
normalize. When the quotient is not overflowed, the raw
characteristic must be decremented by one count to obtain
the true characteristic. Normalizing is accomplished in 3L.
Details of the normalizing procedure are discussed under a
separate heading, ' Normalize."

—

5

20

25

30

35

40

50

55

60

65

70

75

10

In state 3M, the product or quotient formed in 3E or 3F ig
tranaferred into KBD to become an addend in a forthcoming
algebraic accumulation in 3P. The answer to the previous
term, or zero if control passed through 3A, is transferred into
WRK in state 3N. This becomes the augend of the algebraic
sum formed in 3P. After the answer to a new term is formed in
3P, that answer is normalized in 3Q and transferred into ANS
in 3R.

The KBD register is restored in 35
the next PAO in 3T.

and the NAO becomes

ADDITION

The subroutine forms the nonalgebraic sum of either the
mantissa or characteristic, i.e,, (WD) + KKD) —WD or
KWE) HKE) —WE. The contents of the KBD register,
WDS, and WES are not altered by the addition process.

Addition occurs one character at a time beginning at D, for
mantissa additions or E, for characteristic additions and
progressing through D, or E,. If a carry occurs, a carry flip-
flop will contain a “'carry” signal. The logic for any character
proceeds in the following manner: the KBD character is read,
and if a carry is present, the BFF are incremented. The four
LSB of the BFF are transferred into four other flip-flops con-
nected with logical circuitry allowing them 1o be decremented
in straight binary fashion. The WRK character is then read.
The four flip-flops containing the old KBD character are then
decremented until their contents become zero. For each
decrement, the (BFF) are incremented one count. Since in-
crementing the BFF is cyclic 0-9 with a carry occuring on
transitions, to 0 transitions the sum of the KBD character and
the WRK character, augmented by the condition of the carry
flip-flop, is in the BFF. A store command places the sum in the
appropriate WRK character. The process is repeated on
progressively more significant characters until the addition is
complete.

COMPLEM ENTING

The 10’s complement of a mantissa or characteristic is
formed by beginning at D, or E, and progressing through D, or
E,, looking for a nonzero character., When one is found, the
nine’s complement of that character is obtained and incre-
mented by one count. The nine's complement of each remain-
ing character is formed. Complementing also results in a
change of sign of the mantissa or characteristic. The 10’s com-
plement of zero results in a one condition being set into the
carry flip-flop.

ALGEBRAIC SUMS

The system employs an improvement on the logic described
on pages 168170 of the book The Logic of Transistor Digital
Computers by Maley and Earle, Prentice-Hall, 1963, to form
algebraic sums of the mantissas or characteristics, i.e.,
(KEYH WE)—-WE or (KD WD)—-WD. Again, overflows
resulting from algebraic sums appear in the carry flip-flop.
The algebraic addition of two numbers A and B is performed
in accordance with the following rules:

1. If the signs of A and B are different, form the 10's com-
plement of A including the sign of A. Thus, the 10’s comple-
ment of —6.4021 is+3.5979,

2. Then add A+B using the complemented A if it was
formed in step 1. The sum of this addition carries the
original sign of B whether A was complemented or not.

3. When A was not complemented under step 1, the sum
calculated in step 2 is the arithmetic sum (this is simple
addition).

4. When A was complemented under step 1, the sum calcu-
lated in step 2 is further processed to get the algebraic
sum (this is the case of subtraction or addition of terms
with different signs, and subtraction is performed simply
by changing the sign of one term before arithmetic addi-
tion), and this further processing is performed in ac-
cordance with the following rules:

3,623,156

11

a. When the sum has an overflow, the overflow is
dropped, and the sum calculated in 3 with its sign, but
dropping the most significant digit, is taken as the
arithmetic sum. The most significant digit here is a -
carry” number which “overflows’ the normal capacity
of the register.

b. When the sum has no overflow, the 10's complement of
the sum if formed, including the compiement of the
sign of the sum, and this recomplemented sum is taken
as the arithmetic sum.

Arithmetic addition following these rules may be understood
from the following examples of the arithmetic addition of A
and B.

EXAMPLEI
A=4.2361
B=1.5926
Step 1, form 10's complement A’ of A (A4'=A4—10=—5.7639)
A’ =—5.7639
B = —1.5926

A"+ B=—17.3565 (step 2)

A'+B=—7.3565 (step 2)
Step 4b, recomplement giving 10—7.3565=2.6435(answer)

EXAMPLEI

A=4.2361
B=1.5926
complement A (A'=10+4=+5.7639) (step 1)

A’ = +5.7639
B =+1.5926

A'+B=+7.3565 (step 2)

A'+B=+7.3565 (step 2)

step 4b, recomplement giving 7.3565—10=—2.6435(answer)
EXAMPLE I

A=—1.5926

B=4.2361

complement A (A'=10+4=+8,4074) (step 1)

A’ =18.4074
B = 14.2361

A’+B=+412.6435
A'+B=+12.6435 (step 2, note numeral 1 is an “overflow"’)
step 4a, drop overflow, answer is 2.6435

EXAMPLEIV
A=+1.5926
B=4.2361
complement A (4'=4—10=—8.4074) (step 1)
A’ =—8.4074
B =—4.2361

Al - —12.6435 (step 2)

A'+B=—12.6435 (step 2)
step 4a, drop overflow, answer is —2.6435

SHIFTING

The mantissa of any register can be shifted in four possible
ways.
1. Right Shift, RS. Each character of the mantissa is shifted
one position to the right. Zero is shifted into Dy and (Dy)
are lost. The mantissa sign is preserved.

5

20

25

30

35

40

45

50

55

60

65

70

75

12

2. Long Right Shift, LRS. LRS is the same as the RS except
that the four LSB of the IA character are shifted into D,.
Zero is shifted into the A character. The signs of Dy and
[A are not shifted.

3. Left Shift, LS. Each character of the mantissa is shifted
one position to the left. Zero is shifted into D, and (Dy)
are lost. The mantissa sign is preserved.

4. Long Left Shift, LLS. LLS is the same as LS except (Dy)
are shifted into 1A. The signs of D, and IA are not shifted.

MULTIPLICATION

The process of multiplication is shown in FIG. 4. It will be
seen that a 19 or 20-digit product will be formed with auto-
matic truncation occuring in the nine last significant charac-
ters. The 10 or 11 most significant characters of the product
appear in WRK when the multiplication is complete. The
(KBD) are unchanged by the multiplication process. The al-
gebraic sign of the product is placed in WDS.

Upon entering the multiplication subroutine, the multiplier
and multiplicand are in KBD and WRK respectively. In state
4A, the multiplicand is sent to TMP. WD is then zeroed in
state 4B. This initializes the partial product accumulator to
zero.

The signs of the multiplier and multiplicand are compared
in 4C, and the proper product sign is sent to WDS.

In state 4D, the least significant digit of the multiplier is
placed into TIA. The (TD) are then shifted one position to the
right to place the next least significant digit of the multiplicand
into TD,. The binary number 1111 is sent into TD, in 4F. As
partial products are formed, the 1111 in TD, shifts to TD,.
When it arrives in TD,, the product has been formed and con-
trol is sent to state L of FIG. 2.

Before forming a partial product, the contents of WRK un-
dergo a LRS in 4G so that the partial product to be formed will
accumulate into the proper position.

In 4H, the partial product multiplicand is decremented by
one count in straight binary fashion. When the four LSB of
TIA become 1111, a partial product has been computed and
control is directed toward 4D to begin forming a new one.

Partial products are formed and accumulated to form the
total product in 4). The total number of passes through J is
determined by the number placed in TIA during state 4D. A
tally of the product accumulations resulting in a carry is kept
by state 4K. The LRS in 4G causes these carrys to shift into
WD, and become part of the total partial product. Notice that
products of normalized multipliers and multiplicands having a
value of 10 or more result in an overflow condition upon exit.
In other words, the most significant digit of the product is in
WIA. The overflowed condition indicates that the raw charac-
teristic computed in state E of FIG. 3 must be incremented by
one count. THis adjustment and the LRS required to restore
the product to normal form are executed in state L OF FIG. 3.

DIVISION

Upon entering the divide subroutine, the dividend is in WD
and the divisor is in KD. The divide subroutine loop forms the
one’s complement of each BCD quotient character. In state K,
after the quotient is developed in TMP, the individual charac-
ters are recomplemented, forming the true BCD quotient. The
division process is similar to that employed by mechanical ro-
tary calculators.

In state SA, T1A and TD are zerced in preparation to receiv-
ing characters of the quotient. If a division by zero is at-
tempted, control is directed to state 5B which alerts the user
that a division by zero has been attempted. The processor
remains in 5B until the ERR operator is activated.

For meaningful divisions, control is sent to SC where the al-
gebraic sign of the quotient is determined and sent to TDS.

In state 5D, the 10’s complement of the divisor is formed.
Since the calculator has no subtractor, per se, it subtracts by
adding the 10’s complement of the subtrahend to the
minuend.

3,623,156

13

The complemented divisor is added to the dividend (or
remainder) in SE. If a carry occurs, control is routed to SH
where the one's complement of quotient characters is formed
by successively decrementing TD,. If no Carry occurs and
(WIA) 0, control goes to 3G where the MSD of the remainder
is decremented. When there is no carry and (WIA w0, an
overdraft has occurred. If (TIA) 0, the entire quotient has
been formed and control is sent to SK. When (TIA 0, the
partial quotient undergoes a long left shift in SF to make room
for the next one's complement quotient character in TD,. The
overdraft is restored by recomplementing KD in 5D, and ad-
ding the true value in KD to the remainder in SE. Since this
restoration always results in a carry, control is sent to SH
where (TD,) are decremented from 0000 (the LLS in SF put
zero in TD,) to 1111. Control is sent from SH to 5] because
(TIA)=1111.

The LLS of WRK in 5J adjusts the remainder into a new
dividend. Control is sent to SD where the 10's complement of
KD is again formed and the repeated subtraction process oc-
curs to form the one’s complement of the new quotient
character.

Since the one’s complement of each BCD decimal digit is a
nonzero term, it follows that (TD,) can not be zero after form-
ing the first digit of the quotient. As successive quotient
characters are formed, the nonzero term progresses toward
TIA by the LLS in 5F. When it finally arrives in TIA, the divi-
sion is complete. After forming the final character of the quo-
tient control is sent to 5K where the true value of the quotient
is obtained by forming the one's complement of each
character. If (TIA) is now zero, the quotient of the normalized
dividend and divisor was less than one. The raw characteristic
formed in 5K must be decremented one count. If (T1A) is non-
zero, the raw characteristic is correct, but the quotient must
undergo a long right shift to be in normal form. Characteristic
corrections and normalization occur in FIG. 3,state L.

The quotient is transferred from TMP to WRK in state L,
FIG. 5. In SM, KD is restored by forming the 10’s complement
of KD.

NORMALIZE

Normalize shifts the mantissa which is the result of a mul-
tiplication, division, or accumulation into normal form and
converts the raw characteristic accompanying the mantissa
into a true characteristic,

In state A, FIG. 6, KE is set to zero. If the previous
arithmetic operator is and (WIA) is zero, the raw charac-
teristic must be decremented on one, hence a -01—KE in
state 6C. If the PAO was not a divide and (WIA) is not zero,
the raw characteristic must be incremented by one, hence 0]+
KE in 6B. (The actual incrementing or decrementing process
occurs in 6H when (KE)4(WE)—»WE.)

If an overflow has occurred, the mantissa is placed in nor-
mal form by state 6D. When control passes through 6D, it will
generally go directly to 6H where the true characteristic is
formed. Certain circumstances will result in (WDg)=0, routing
control to 6E. These are: (1) a zero product, quotient or sum,
and (2) a nonzero sum resulting in zero(s) in the most signifi-
cant character(s).

The processor will left shift (WRK) in state 6F to get a non-
zero digit into WD,. Each shift is accompanied by an incre-
ment tc KE, in 6G. If the sum is nonzero, control is sent from
6G to 6H when the sum is shifted into normal form. The raw
exponent of the number being normalized is updated in 6H to
form the true exponent.

If, after nine shifts, the (WD;) are still zero, control is sent
from 6E to 6J where the true exponent is set to +00, resulting
in (WRK)=0.000000000 00. This is the proper indication for
a normal zero.

ACCUMULATE

The accumulate subroutine shifts the characters in KD or
WD 50 that their decimal points align. It then forms their al-
gebraic sum.

10

20

25

30

35

40

45

50

60

65

70

75

14

When neither quantity to be summed is zero, control is sent
to state A of FIG. 7. Here the value of (KE)—(WE) is formed
and sent into WE. This difference indicates how many shifts
are required to align the decimal points. If the difference is
positive, (WD) must be shifted right to achieve alignment.
When the difference is negative, (KD) require right shifts for
proper alignment. Shifting is accomplished in states 7C and
7D.

If more than nine shifts are required to achieve alignment,
i.e., (WE,) 0 upon leaving 7A, control is sent to 7G or 7H. If
(WES) is positive, the number in KBD is the true sum so
(KBD)—WRK in 7H. When (WES) is negative, the true sum
is in (ANS) so (ANS)>WRK in state 7G.

The raw characteristic of the sum is lost in 7A. In 7E and
7F, the raw characteristic (the characteristic of the number
having the largest characteristic) is placed in WE. The mantis-
sas are summed in 7J. Overflows resulting from this state are
normalized and true characteristics are determined in state Q,
FIG. 3.

The logic described thus far would interpret a normal zero
as a larger quantity than a number having a negative charac-
teristic. A portion, or all of the number having the negative
characteristic could be lost by shifting if precautions are not
taken to prevent such action. For this reason, control is sent
directly from the input to the output if (KD,)=0. In other
words, if (KBD)=0, the true sum is already in WRK. On the
other hand, when (WDg)=0 and KDy, control is routed
directly from the input to 7H where (KBD)—»WRK.

STRUCTURAL ARRANGEMENT

Referring to FIG. 8, the calculator's electronic section con-
sists of control logic 8V, two fixed wired logic sections 8U and
8W, a random access memory 8X, flip-flop registers 8Z, input
lines 8EE and output lines 8FF, and, in addition, a tester can
be connected to the calculator at 8DD and 8CC as explained
more fully hereinafter.

Logic is performed within the calculator by properly
sequencing the flip-flop input lines 8M from the logic box 8W.
The logic within this box has a dual responsibility; first, it
determines the internal sequercing of events by controlling a
set of eight flip-flops (F13, F12, F11, F10, F03, Fo2, Fo1,
F00) while controiling the remaining flip-flops either directly
by their input lines or indirectly by controlling “instructions”’
which are connected to other instructions or to flip-flop in-
puts. Those instructions connected to other instructions must
eventually terminate at an instruction which controls flip-flop
inputs.

Four of the flip-flops that control internal sequencing are
used as inputs to the subroutine decoders and drivers, 8U. The
16 possible combinations of FO3-F0Q flip-flops are decoded
and connected to a driver circuit (FIG. 9) which selects one of
the 16 subroutine drive lines. The selected drive line is con-
nected to the positive supply. The remaining 15 subroutine
drive lines remain floating at near 0 volts. A typical subroutine
driver is shown in FIG. 9, 9A. Notice that the driver is
qualified with the signal YLCY which emanates from the con-
trol logic 8V in FIG. 8. By this means, all subroutine drive
lines are off when YLCY is false (0 volts).

The remaining flip-flops that determine internal sequencing
(F13, F12, FH1 and F10) are decoded into gates which are
used to clamp signals coming from the subroutine drive lines
via resistors B in FIG. 9. In order to achieve minimum cost, the
clamping gates or “qualifiers” are not limited to the 16 possi-
ble four input gates. All of the 80 possible AND-gates using
F13, F12, F11, and F10, are developed. They are defined in a
later section, a typical qualifier gate is shown in FIG. 9, 9C.
These gates are used quite frequently throughout the system.
Most of the internal sequencing is accomplished directly from
the subroutine drivers and qualifiers formed from F13, F12,
F11 and F10. It will be shown later how the states of the
remaining flip-flops will be used to form other qualifiers which
in combination with the qualifiers from F13, F12, F11 and
F10, will precisely define the internal sequencing.

3,623,156

15

The second responsibility of the logic box 9W is that of con-
trolling the remaining flip-flops either directly by actuating
their inputs, or indirectly via instructions. FIG. 9 shows how a
typical instruction is executed. Assume that the S010] drive
line is selected as is the qualifier gate E13F11-E10 (E13
represents the “0™ output line of F13, while F13 is the 1"
output line.) Current passing through 9B then enters the in-
struction driver 9D. In response, the IESF (Instruction
Exchange Sign and Fifty) instruction drive line is connected to
+135 volts and current will pass through the resistors 9E. The
logic of this instruction will cause the contents of flip-flops
F50 and F24 to be exchanged between each other.

Any of the 52 J-K input lines or 29 instructions may be con-
nected 1o a subroutine drive line and executed when the quali-
fying conditions are met. In this way, complete control over
the system is available at all times.

A brief description of all flip-flops, instructions, and
qualifiers follows.

FLIP-FLOP ASSIGNMENTS AND PRIMARY USES

00 Primary Flip-flops (PFF), used to identify subrou-
tines.
01
02
03
10 Secondary Flip-flops (SFF), used to identify states
11 within subroutines.
12
13
20 Bit Flip-flops (BFF), used as data register for infor-
mation
21 into and out of the core memory.
22
23
24
30 Character Flip-flops (CFF), used to define character
31 addresses in core memory.
32
33
43
40 Word Flip-flops (WFF), used to define word ad-
dresses in
41 core memory.
42
50 Temporary Flip-flops (TFF), used as for temporary
information
51 buffers such as carry bits during an add.
60 Memory Flip-flops (MFF), used to determine core
memory
61 " cycling and to allow the tester to be connected to the
62 system.
63
INSTRUCTIONS
1. IACE—Turns the CRT trace ON.
2. IBRS—Causes (BFF) to be shifted right one position,
zeros enter F24 while bits leaving F20 enter F50.
3. 1ICAL—Used to call a subroutine. As a result of ICAL,
the following events occur simultaneously:
1.111 1—=SFF
2. (SFF)—BFF
3. 110—F43,F42, F41
4. 1200—CFF (1, 0,0,)—F33,F31,F30
5.ISTO
4. ICFF—Causes (CFF) to change from MSD or LSD of
Mantissa or exponent according to the following convention:
F10=i F10=0
Dy—D, O,~+E,
D,~D, E—D,
EE, D,—E,
E,~E, Es—D,

10

20

25

30

35

40

45

50

55

60

65

70

75

16
The ICCF § y comp F0,
and F31 at all times and complements F32 if
F10=0.
5. IC40—Complements F40.
6. IC41—Complements F41.
7 IDBF —Decrements BFF, 8—4-2-1 Binary Cyclic, i.e.,
1740, Cyclic.
8 IDCF—Decrements CFF, Binary Cyclic.
9. IDDL—Display Decode—Left Half of “E*’ Pattern.
10. IDDR—Display Decode—Right Half of “E” Pattern.
11, IDHD—Hold “Down” CRT Trace.
12. IDHL—Hold “Left” CRT Trace.
13. IDRD—Restore *“Down" CRT Trace.
14. IDRL—Restore ‘‘Left” CRT Trace.
15. IDRR —Restore “Right” CRT Trace.
16. IESF—Exchange (F50) and (F24).
17. 1IBF—Increment BFF. Counts 0-9 in 84-2-1
Cyclic.
| -+ F50 when counting from 9 to zero, i.e.,
carry used in adding.
18. IICF—Increment CFF, Counts 0-17, Cyclic.
19. 1JBF—1111—~F23,F22,F21,F20.
20. IKBF—0000 —+F23,F22,F21,F20.
21. IRDR—Read Memory into BFF and restore.
22 IRTN—Used to return from a called subroutine to
the
calling subroutine. In response to an IRTN,
the following steps are executed simultaneously:
1. 1000 ~PFF
2. 1200—CFF,(1,0,0) F33,F31,F30
3.1111-+SFF
4.110—F43, F42, F41
5. IRDR
23. ISTO—Stores (BFF) into Core Memory.
24. ITBS—(BFF)—SFF.
25. ITKB—Encoded Keys — Bit Flip-flops.
26. ITRA—Inter-Subroutine Transfer.
27, ITSB—(SFF) —BFF, F24 Unchanged.
28, ITYF—Transfer Vector Decoding (F24=1).
29, ITVE—Transfer Vector Decoding (F24=0).
QUALIFIER GATES

Eighty qualifier AND-gates numbered in radix 3 from
GO000O to G2221 are used. The ternary digit ‘0" defines the
zero or “E" state of a flip-flop as one input while the digit*“1"
defines the one or “1" state of the flip-flop. The digit “2"
means that the flip-flop corresponding to that particular digit
position is not used in forming the gate. The digit positions
from, most significant to least significant position, define the
inputs required from flip-flops 13, 12, 11 and 10 respectively.
Thus, the gate G0210 represents a connection of the wires
E13, F11 and E10. These gates are defined by logical equa-
tions as explained below where the gate GO210 would be
defined as follows:

GO0210=E13-F11 E10
The actual wiring of G0210 is shown in FIG. 9 at 9C.

In addition to these 80 qualifier gates, the following special

qualifiers are used.

SPECIAL QUALIFIERS

YBFN—(BFF y=%,
YBFU—{(BFF)=1,
YBFZ—(BFF=0(i.c.,

YDNE—(CFF D,

YEOD—End of Displuy

YEZR—(CFF=E,

YKDN—Key Down

NKDN—Key Not Down

YLSD—(CFF)=E, or D,

10. YLCY —Perform Logic Cycle

YMOD— Multiply or Divide Key Down
NMOD—Multiply or Divide Key Not Down
YNZE--Zero Key Not Down

NQ24—

(e, 21001)

CEmNs LML=

12
13.
14,

3,623,156

to Five Leveh En;:;)din| Keyboard
Conditions
18. NQ20—

YQAA—Special, YQAA=F14-F21-G000)
YRDM —Read Memory

YRUN—Temner Switch Condlition
YSAN—Sense Amplifiers ON
YSIN—(CFF»=D,or E,

YSSR—Single Step Read Switch On Testar
YSSS—Single Swep Store Switch On Tester
YSST—Single Swop Switch On Tester
YMTM—Write Memory
YMSD—(CFF)=E, or D,

LOGICAL EQUATIONS

The circuitry of the calculator described herein is presented
in the form of logical equations instead of circuit diagrams,
since the circuitry is much less cumbersome and much more
understandable in the form of logical equations. The logical
equations are equivalent to circuit diagrams, and an operating
calculator constructed as shown herein has been built directly
from the logical equations without the intermediate step of
preparing complete circuit diagrams. The logical equations
are written in the form of X=Y ‘Z where the terms X, Y and Z
denote electrical terminals which are connected together by
wires and diodes, for instance, in such a way that terminal X
receives a signal when terminals Y and Z are concurrently giv-
ing signals. (The - symbol between terms on the right-hand
side of the equation indicates that all of the events indicated
on the right side of the equation must occur simultaneously to
cause the event on the left side to occur.) The electrical ter-
minals which are denoted by the terms in the logical equations
are (1) the electrical terminals of certain mechanical switches
such as the keyboard switches or switches like the YRUN
switch mentioned in the preceding section, (2) the electrical
terminals of flip-flops, (3) instruction drive lines etc., and (4)
certain electrical terminals called gates.

The flip-flops (bistable devices) employed in the calculator,
are preferably of the type known as J-K flip-flops having two
input terminals denoted by the letters J and K, and two al-
ternately operable output terminals denoted by the letters E
and F. The preferred flip-flop is illustrated in FIG. 29, and is
described in detail below. The flip-flop operates as follows: An
input pulse at terminal J causes an output signal at terminal F;
and input pulse at K causes an output signal at E, and simul-
taneous inputs at J and K cause the signals at E and F to
reverse.

As mentioned above, the calculator described herein em-
ploys 27 flip-flops which have been assigned arbitrary flip-flop
numbers 00, 01, 02, 03, 10, etc. The terms in the logical equa-
tions which denote flip-flop terminals are written in the form
of a letter followed by a two-digit number where the number
identifies the flip-flop and the letter identifies the particular
terminal of the flip-flop. Thus, the term F62 means the F ter-
minal of flip-flop number 62.

The 29 instruction drive lines are identified in equation
terms by four letter codes starting with I as illustrated under
the heading “Instructions’’ above.

The electrical terminals called gates are merely preassem-
bled groups of connections which are used so frequently that it
is convenient to connect the gate components to a single ter-
minal to which a single connection may be made (and a single
logical equation written) each time it is desirable to use the
complete combination of components. The calculator em-
ploys 108 of these gates as indicated above. A connection to a
gate is written as a term in a logical equation as the letter G
followed by the gate number or by a four-letter code starting
with Y or N. One logical equation defines the components of a
gate while several other logical equations define the manner in
which the gate is connected to flip-flop terminals, etc.

For example, logical equations may be used for defining the
electrical circuits of FIG. 9. The equation G0210=E13F11-
E10 defines a gate and can be read, “a signal appears at the
output of gate G0210 when signals appear concurrently at the
E terminal of flip-flop number 13, at the F terminal of flip-flop

10

20

25

30

35

40

45

50

55

60

65

70

75

18

number 11, and at the E terminal of flip-flop number 10.”
Similarly, the equation S0101=E03-F02'E01 F00 YLCY
means that the drive line S0101 is energized when signals ap-
pear simultaneously at the E terminals of flip-flops 03 and 01,
the F terminals of flip-flops 02 and 00, and at the YLCY quali-
fier gate.

As mentioned in the preceding section, the YLCY qualifier
denotes that flip-flops 63, 62, 61, and 60 are in their 0, 0, 0,
and | states, respectively. Accordingly, the YLCY qualifier
gate may be defined by the logical equation YLCY=E6J-E62:
E61-F60. This definition of the gates, such as YLCY, simpli-
fies the logical equations considerably as indicated by the
§0101 equation where gate definition is not used:

S0101=E03-F02'E01 FOO-E63-E62'E61-F60

With the above logical equations defining parts of the cir-
cuits in FIG. 9, the remaining circuits in FIG. 9 are defined by
the following logical equations.

IESF=S0101-G0210

K24={ESF-E50

J24=IESFF50

KSO=IESFE24

JS50-IESFF24

It should be noted that the transistor drive 9D does not ap-
pear specifically in the IESF equation. However, the calcula-
tor is designed for minimum power consumption by employing
a transistor drive like 9D for each of the 29 instruction lines
thereby providing power consumption in only those instruc-
tion lines that are actually performing useful work at any given
instant. The final four equations above indicate the connec-
tions by which the IESF instruction driver performs its in-
tended function i.e., exchange the contents of flip-flops 24 and
50.

The actual composition of the special qualifier gates may
now be described with the aid of logical equations. Some of
these special qualifier gates are manual switches, the circuitry
of which is apparent from the qualifier definition. The remain-
ing qualifier gates are electronic gates made up by intercon-
necting flip-flop terminals and other gates. The circuitry em-
ployed to form these remaining qualifier gates will be apparent
from the following logical equations.

YBFN=F23E22E21'F20

YBFU=E23E22'E21-F20

YBFZ=E23-E22°E21 E20

YDNE=YMSD-E32

YEOD=YSIN'-E32 E40'F51

YEZR=YLSDE32

YLSD=F33F31'F30

YLCY=F60-E61-E62E63

YQAA=F24 F21-G0001

YRDM=F60'F63

YSAN=F61F62F63

YSIN=F33-E31'F30

YWTM=F61E63

YMSD=F33E31'E30

SUBROUTINE LINES

In addition to the flip-flops, instructions, and qualifiers, the
calculator employs 16 subroutine instruction lines which are
made up as electronic connections of PFF. These 16 subrou-
tine instructions are numbered in binary from S0000 to
S1111, Each of the digit positions defines the "1 or the ‘0"
state of a flip-flop as an input. The digit positions from most
significant to least significant position define the states of flip-
flops 03, 02, 01 and 00, respectively. Each instruction has a
fifth input which is the qualifier YLCY. The resistor in each of
these instructions returns to the power supply. Thus, the in-
struction 50101 is of the form: ‘

S0101=E03 FO2'E01 FOOYLCY

One equivalence exists in the system. The instruction ISTO

is equivalent to J63, i.e., they both represent the same signal.

3,623,156

19
MEMORY ORGANIZATION

The memory 8X is a conventional ferrite core random ac-
¢ess memory requiring the following control and information
lines: address lines BP to define the character being accessed;
bit lines 8R to convey the information from the memory to the
memory access register, i.e., bit flip-flops — F24, F23, F22,
F21, F20; inhibit lines 8Q to define which bits in the selected
character are to receive information during a write cycle; and
three control lines 8E, 8F and 8G. The latter three lines emit
signals under the direction of the control logic 8V which cause
information to be read into or out of memory. This section is
discussed in detail under the Control Logic section. In essence,
whenever a read instruction, IRDR 8C, is received by the con-
trol logic BV, it will issue IKBF and K24 instructions at 8A A to
zero F24, F23, F22, F21 and F20. The memory is then read
and the sense amplifiers are activated 8F., Any information in
the memory is placed into F24-F20. The read memory cycle is
followed by a write memory cycle 8E which, via the inhibit
lines 8Q, writes the information present in F24-F20 into the
memory. Thus, the IRDR instruction provides a read and
restore function, and hence nondestructive readout.

The store instruction, ISTO at 8D, is identical to the IRDR
instruction except that the 1KBF and K24 instructions at BAA
are not given and the sense amplifiers are not turned on, (8F).
This results in the core being cleared during the read memory
cycle 8G, and the information in the bit flip-flops (F24-F20)
being written into core. The memory consists of six words
defined by the Karnaugh Map of FIG. 10. Each word consists
of 13 characters of five bits each. The characters are defined
by the Karnaugh Map of FIG. 11. Note that the characters EL
and FS and D9 and DS are decoded as one and the same
character. This is because the sign bit of both the mantissa
(DS) and the exponent (ES) occupy the fifth bit (F24 posi-
tion) of the most significant character of the mantissa (D9)
and exponent (E1) respectively. Notice that whenever F43
goes to a ““1" state, the instant access character (IAS) is ac-
cessed, regardless of the status of F33-F30.

A nomenclature evolves around the Karnaugh Maps of
FIGS. 10 and 11. It is common to refer to the four registers
KBD (keyboard), ANS (answer), TMP (temporary), and
WRK (working). To define a specific character within a re-
gister, the first letter of that register designator is combined
with the two leuter identifier of the character encoding. For
example, KD9 refers to the most significant character of the
KBD register; WES refers to the exponent sign of WRK, and
TIA refers to the instant access character of TMP. The binary
addresses for these three characters are (F42, F41, F40, F43,
F33, F32, F31, F30)=(0,0,0,0, 1,0, 0, 0), (0, 1,0,0,1,1,0,
1),and (0,1,1,1,2,2,2,2) respectively. The 2’s in the latter
case signify that the conditions of F33, F32, F31 and F30 can
be either 1'sor 0's.

All numeric information stored in memory is in standard
8-4-21 BCD. When accessing memory, F20 is the least sig-
nificant bit and F23 is the most significant bit of numeric in-
formation. F24 is the most significant bit of all five bit charac-
ters.

CONTROL LOGIC

The Control Logic Section 8V is illustrated in greater detail
in FIG. 12, and consists of four flip-flops F63, F62, F61, F60
and associated wiring. A large portion of this section deals
with the tester used to check out the system. Although the
tester is described in detail elsewhere, for the purposes of this
explanation, it can be considered to consist of a device with a
half-run switch, a single step switch, a read switch, and a store
switch, and a means for forcing all of the flip-flops in the
system, except those used in the control logic (F63-F60), into
any desired state.

Assume that the run-halt switch is in the run position
(YRUN=1) and that (F63, F62, F61, F60)yx=(0, 0, 0, 1), state
12A, then according to FIG. 12, the control logic will issue a
YLCY qualifier. This signal will allow one of the subroutine

15

20

25

30

35

40

45

50

55

60

65

70

75

20

drive lines (FIG. 8B) to emit a signal, hence a logic cycle will
occur. At the end of the current clock pulse all instructions
directed by 8W will be executed. If neither an IRDR (read &
restore), or an ISTO (store) instruction occurred, control
remains in state A of FIG. 12, and a new logic cycle will com-
mence.

On the other hand, if an ISTO command occurs, a J63 com-
mand is given and control goes from 12A to 12B. This causes
memory to be read with the sense amplifiers off (atates 12B
and 12D) followed by a period for memory drivers to recover
12E, and a write memory qualifier to occur in states 12F and
12G. The clock frequently is chosen so that the switching time
of the cores is twice the clock period. Other schemes can be
used depending upon memory requirements. Two instruc-
tions, K42 and K43 are given from state 12G. These particular
reset instructions result in considerable economy by providing
automatic reset of instructions using 1AS memory characters
and auxiliary storage registers. Note that no logic cycles occur
when accessing memory since YLCY occurs only when in
state 12A. This saves on power supply needs by insuring that
no power is used in blocks U or W of FIG. B, during a memory
access and visa versa. It also insures that no instructions are
executed during memory cycling.

When an IRDR instruction is encountered from A, FIG. 12,
control is sent to 12C where the bit flip-flops F24-F20 are
cleared by the IKBF; K24 instructions, and the information
present in cores is read into F24-F20 during 12L. The infor-
mation is restored into memory during 12F and 12G.

If the run-halt switch is switched to halt YRUN=O(NRUN=
1), control is directed from 12A or 12G to 12H. Once in 12H,
if the single step switch of the tester is down (YSST=]), as it
may be when operating in the single step mode, control
remains at 12H. When the single step switch is released
(YSST=0), control goes to 12J and remains there until the sin-
gle step switch is actuated again. Control then goes to 12K. If
neither the store switch or read switch on the tester is on
(YSSS=0, YSSR=0), control goes to 12A and a single logic
cycle is executed (unless YRUN was switched to Halt). If the
store switch was down when the single step switch was actu-
ated from 12J, control goes from 12K to 12B and the informa-
tion in F24-F20 is stored in memory and a logic cycle is not
executed. Similarly, if the read switch is actuated, the memory
is read into F24-F20 and a logic cycle is not executed.

The actual electronic circuitry for performing the various
steps illustrated in FIG. 12 will be apparent from the “logical
equations” set forth below.

With the above description of the meaning of the logical
equations, the circuitry used in the Control Logic Section il-
lustrated in FIG. 12 will be apparent from the following logical
equations:

K62=F63 F61

K62=E60 YSST

K62=F61 ' YRUN

J62=F60-E63 NRUN

J62=F61E63

K60=E61 F62 E63 NSST

K60=F61F63

K63=E60

J60=E62

J61=F63

K61=F62 E63

IRDR=E60'E62-E63 YSSR

K42=F61 F62F63

K43=F61'F62'F63

ISTO=E60°-E62'E63YSSS

IKBF=YGATE

IKBF=YGATE

K24=YGATE

YLCY=F60-E61 E62E63

YSAN=F61F62F63

YRDM=F60'F63

YWTM=F61F63

YGATE=F62'E61-F63

3,623,156

21

The circuitry employed in the other sections of the calcula-
tor will be understood from the logical equations which are set
forth below read in conjunction with the corresponding figure
of the drawing. These logical equations are written in the same
form as the equations given above with one exception. It will
be noted from the 1ESF equations given above in connection
with FIG. 9 that the same term “IESF” appears on the right in
a series of equations (the last four). In order 1o avoid repeti-
tion of such terms in long series of equations, certain headings
are used below to indicate the omission of a repeated term
from the right-hand sides of the several equations of the series.
Written with such a heading, the IESF equations become:

$0101=E03-F02E01 FOO-YLCY

GO0210=E13F11°E10

IESF=80101-G0210

(equals followed by IESF)

K24=ES0

J24=F50

K50=E24

J50=F24

(end of IESF)

Wherein such a series, the omitted termn was the only term
on the right-hand side of the equation, an * is used on the
right-hand side of the equation.

LOGICAL EQUATIONS—INSTRUCTIONS

(equals followed by IBRS) J43="
K24=" Ji4 ="
J23=F24 Ké41=*
K23=E24 133
J22=F23 K3 ="
K22=E23 K30
J21=F12 (end of ICAL)
K21=E22
J206=F21 (equals followed by ICCF)
K10-=E21 132=E10
150=F20 K32=E 10
K50=E10 J3 ="
{end of IBRS) K3)=*

130="
(equals followed by KCAL) K30=*
ITSB=* (end of ICCF)
ISTO="
J1d=" J4=IC40
J12=* K40=IC40
JNi=* J41=iC4)
J10=" K41=IC41

(equals followed by IDBF)
J23=E12°E21E20
K23=E22-E21 E20
J21=E21'E20

(equals followed by IDDL)
J23=YBFU
J23=F22E11'E20
J23=F12-F21 F20

K22=E21'E20 K23=E20
J21=E20 J22=F22
K21=E20 K22=F11'E20
J20-" J21=E13E22
K20m=" K2)1=E22
(end of IDBF) K21=E20
120E22F20
(equals followed by IDCF) K20=F22-E2)
J3I=E32EMEN K20=F23
K33=E32E3I'EdO J80=YBFU
J31=EMNEN JSO=F22El0
K31=E3IEJ0 (end of IDDL}
J31=E30
K31=E3 (equals followed by IDDR)
1300 133me
K30=* J22=~F21 E20
{end of IDCF) K22=*
Jil=-
J20=F12-F21
K20=F21
K20=E22
J50me

{equais followed by IESF)
J50=F24

(end of IDDR)
{equals followed by JBF)
J23=e

K50=E24 J22m=>
J1a=F50 J21=r

K24= ES0 J20="

{end of IESF) {end of UBF)
(equals followed by 1IBF) K20=IKBF
J23»=F22F11F20 K21=IKBF
K23=F20 K12={K BF
J22=F11F20 K213=IKBF

20

25

30

35

40

45

50

55

60

65

70

75

K12=F21F30
J21=E23F20
K21=F20
J20m*

K20=*
J31=BFZ
{end of IBF)

(oquals followed by IICF)
J33=F32F31 ‘F30
K33=F321F31F3
J32=F31F30
K32=F31'F30

131=F30

K31=F3

130>

K30="*

(end of IICF)

(equals followed by ITKB)
K24~NQ24

K23=NQ23

K22=NQ22

K11=NQ21

K10=NQ20

{end of ITKR)

ITRA=G2011-F22-F23

{equals followed by ITSB)
J23=F13

K23=E13

J12=F12

K22=E12

111=F11

K21=E1l1

J20=F10

K10=E10

(end of ITSB)

{oquals followed by [TVE)
K03=G 1202

KO03=E12

JO1=EI2

JO2=EI1

Jo1=El1l

100G 1202

J13=F12

K13=G1021

J10=F13
K10=G0201
K10=G2001
{end of [TVF)

{equals followed by IRTN)
JO3="

K02=+

KO}=*

KO0="

IRDR=*

J1 3=

22

J63={RDR
J63IRDR
K24=iRDR

{equals followed by ITBS)
JI3=F213

K13=E23

J1=F32

K12=E21

J1I=F2)

Kii=E21

J10=F20

Ki10=E20

(end of ITBS)

Ki¥»=G1012
J12=El0
K13=G0200
K12=G1201
N 1=Go120
Kl1l=El2
J10=F12
J10=F11
K10=G1012
(end of ITVE)

(equals followed by ITVF)
Ko3=E11
K03=E10
K03=E12
J01=G0003
J01=G0g21
Joe=G 1201
Joo=G2110
J13=E10
JId=F12
K13=~G2000
K13=G2110
J12=E11
J13=G2221
Ki2=E1l
J11=E10
K11=G2t10
Ji0=F11
J10=F12
J12me
JI1=*
J10="
J43mr

Ja 2=
Kd1=°
J33me
K3l=*
K30+
J4o=F10
K40=E 10
(end of IRTN)

LOGICAL EQUATIONS—SUBROUTINE
ACCUMULATE SOO0O0—FIG. 13

{equals followed by S0000)
J13=G0221
K13=G1021
K13=G2100
K13=G1111 F41 YDNE
J12=G0021
J12=G1202
K12=G1100
K12=G1102F41-.
J11=Go020
K11=Go120
K11=G0021 YBFZ
J10=G2210 YEZR
K10=G6012

K3=G1010-F50
Jl=Glo22
J24=(;0220
J32=G1012
J40=G0100
Jao=(i 1001
J43=G2002
150=G 1020
K14=Go112

F11=G2220 YBFZ
J13=G0802
ICAL=G0102
ICAL=G1020
1IC46=G 1121 FS0
1IC41=G112}
IDBF=G1110
IDCF=G00112
IDCF=G1210
IESF=~GO211
IICF=G1121 F41
JOO=G1010
101=G0102
Jo2=G1020
K32=G0101
K40=G2011
K51=G1012
IRDR=G2011
IRDR=G1111 F41
=
ITRA=G2122G0211
IKBF=G0001
J123=G0020

{end of SOO00)

23

LOGICAL EQUATIONS—SUBROUTINE
MULTIPLY—-SOOOI—FIG. 14

{equals followed by 50001) K13=G2111-F40-YDNE

ICAL=G1201 J12=G6203
ICAL=G1110 J13=Q1212
1ICCF=G0100 J12=YLSD
ICCF=G1110 K112=Go0120
1C40=G1123 K12=G0112
1IC41=G0111 K12=G0O201-F$1
IDBF=G 1020 J11=G0120
IDCF=G2010 Kl1=G1021
UCF=G111-F40 J10=G0112
IESF=G0211 K10=G0221
[BF=G 2000 UBF=G 1200
ICF=G2110 Jol=Gi1110
J13=Go120 J02=(1201
K13=G2100 J24=G 1021
K13=G1020 YBFZ J24=G0210-FS0
IKBF=G0210
340==G0120
K24=G0210-F$0
J41=G 1200 ITRA=G2011F12F13
J41=Goo22 IRDR=G0122
J43=G0201 IRDR=G2111 F40
J43=G1022 ISTO="*
J43=G2010-YLSD KS1=G2011
180=¢ (end of SO001)
IS1=G2001

LOGICAL EQUATIONS—SUBROUTINE
SUM—SOOIO—FIG. 15

(equals followed by SOO10) JOO=G 9o 1
K13=G2120 Jo2=Goooo
K13=~G1120 FSO-ES1 J02=G0011
Ki12=G11901 J4-G0022
J11=GO122 E41 YMSD J43=G0100
Ki11=G1212 J80=G 1001 F24
J10=G2122 K$0=G 1001 F24
J10==E50 IRDR=(G1122

K10=G 1002 IRDR=G2101-F41
ICAL=G0022 IRTN=GO112
ICCF=G1210-FS) ISTO=G2121 ESG-F51
K40=G1121 1STO=G0201
IC41=G1102 lICF=G0102 F41
IESF=G1102 (end of S0010)

LOGICAL EQUATIONS—SUBROUTINE
ADD-—SOOI—FIG. 16

(equals followed by SO011)

J13=G 2000 1IBF=G 1003
K13=G2000 IIBF=G0221
J12=G 2000 NIBF=Go0210
K12=G0200 NBF=G0102
111=G02100 lIBF=G1201FS1
J11-=G 2000 ICF=Gl110
Kil=G1310 J41=G1211
Ji0=G2110 I81=Gl102
J10=Go102 KS1=G 1100
J10=G 1002 KS1=G1102 YBEN
Ki10=G0221 KS1=G1211
K10=G1201 IRDR=G 1120
K10=G1211 ISTO=G000)
IC41=G1120 ITBS=G 1100
TDCF=G1211 IRTN=GO00O YMSD

(end of SO011)

3,623,156

24
LOGICAL EQUATIONS—SUBROUTINE

NORMALIZE—SOIO0—FIG. 17

5
equaly followed by $0100)
JN3=G1322 J12=G0223
J13=G12220 J12=G2221
K13=G1121 Ki3=

10 x13~G1001 J11=G0020
K13=G1110-YBFZ J11=G1120
J11=G1122 YBFZ 143=G 1121
K11=G0021 J43=G2113
K11=G0220-YBEN 143=G0020
110=G 12320 1S0=G1221

15 xio=Goni2 151=G 1211
K10=G1301 K02~G 1100
ICAL=G1012 K24=G2023
ICCF=~G 1302 K32=G 1221
IC41=G0100 K40=G0112
IESF=G2111 KS0~G 12010

20 UBF=Go112 KS1=G0212
1IBF~G0022 F24-F51 IKBF=G 1102
J00=G 1013 IKBF=G 0002
101=G1100 IRDR=G 2121
J41=G1121 1STOms
141~G0022 J14=G0021 ES1

25 IIBF=G 0022 E24 ES1

{end of
$0100)
30 LOGICAL EQUATIONS—SUBROUTINE

SHIFT SOIOI—FIG. 18

35
{equals followed by $0101)
J13=G0200 J12=G0210
K13=G1002 K12~G 1300
K13=G1200 YLSD K12=G2111
K13=G1021 YMSD J11=G2002
40 j12=Gooo2 KI1=G1012
K11=G0020 143=G0201 F51
K11=G2111-E50 IKBE=G 0002
113=Go621 K32=G1112
J10=G1o10 IRDR=G 1002
K10=G0201 IRTN=G2110
45 Kio=Ge112 ISTO=G0012
ICCF=G1010 UCF=Go121
1C40=G2111F22 IICF=G0o020
1IC41=G2111F13 (end of 50101)
IDCF=G2160
IDCF=G002]

50 IESF=G0012
J43=G12002 Y MSD
J43=G0110 Y MSD FS1

55 LOGICAL EQUATIONS—SUBROUTINE
COMPLEMENT & EXPONENT UPDATE
—SOlIO—FIGS. 19 & 20
60

(equals followed by S0110)

J1=G2o11 K10=G1121

65 J13=G2111°FS)1 YBFZ K10=G1012 ' YMSD
K13=G1012 ICAL=-G0100
K13=G1020 ICCF=G1210
J12=G1212 IC40=G2002
Ki3=G21t1 1IC41=G 1002
J11=G12120E24 1C41=G1121F14

70 K11=G0020 IIBF=G0021 F51
J10=2G 1210 UCF~G1022
K10=G 1002 J34=G0012
Jax=G1200 1STO=G0012
181=G1122 J23=G0121 E21 E22
K01=G2100 K23=G0121
K02=G 0000 J22=GO121F21

75 K2a=Goona K22=G0121F21

KS1=CG0021
IRTN=(2110
IRDR=C1022

J20=030321
K10=G0121
(end of 50110)

LOGICAL EQUATIONS—SUBROUTINE

DIVIDE—SOIII—FIG. 21

(equals followed by SOIll}

JI13=GJ010
J13=G21168- YBFZ
J12=Goo12
K12=G2111
J11=Go201
K11=G0120
K11=Q1121
J10=G0012
J10=E40 YLSD
K10=G9112
K10=G2211 YBFZ
K10=G0002F51
K00=G2101
K01=G 1200
K02~=G1021
K16=G1222
K32=G2101

K40=G2102 JSi1=®

KS0=" IKBF=G0220
IRDR=~GQ02] (end of SOIII}

IRDR=G0200-E40
ISTO="
ICAL~G2101
ICAL=G1202
ICCF=(1010
IC40=G0220
1C40~C0012 YBFZ
1C41=G0002
IDBF=G1111
IDCF=G0200 E40
IICF=G2110
UBF=G0220
J43=G0021
Jadx=Gol12

LOGICAL EQUATIONS —SUBROUTINE TRANSFER
VECTOR—SIO00

ITBS=51000
ITVF=S51000-F24

ITVE=S1000-E24

LOGICAL EQUATIONS - SUBROUTINE ENTER DIGIT
$1001 - FIG. 22

LOGICAL EQUATIONS —SUBROUTINE ENTER

DIGIT §1001—FIG. 22

{equals followed by S1001)

J13=G1020
J13=G2111
J13=G2011 F13
K13=G1201
K13=GI1210
J12=G 1012
J13=~G2001-FS1
JI12=G2011'YBFZ
J12=G2011 F23F14
K12=G0200
K12=G1121
K13=~G2111'YEZR
J11=Gol102
JI1=GO0201'E24
K11=G1031
K11=G2111-'YEZR
K11=G0112 YEZR
J10=G3020
J10=G1230
K10=G1211
K19=G112}
IDCF=G2230
K41=G2110
K41=Go101
K41=YQAA
K50~G0211-E20
IRDR=G0021
IRDR=G1220

IESF=G1102
K24=G0120-YLSD
IICF=G1101
1JBF=~G2000
JO1=GOO10-E21
JoI=Go161
102=G0201F24
JOI=GOOL0-E21
JO2=G2111 ' YEZR
J12=(0100- Y ZNE
132=G1ol1
140=1020
J40=G1210-YNZE
Ja0=YQAA
J41=Go200
Jar=Gi112
J43=Go021

J43=G 0100
IsI=G1101
KOO=YQAA
K40=Go0121
K40=G2111'YNQ21
IRDR=G2012
ISTO=G2212
ITBS=~G0001 F24
ITKB=G 1002

{end of S1001)

20

25

30

35

40

45

50

5S

60

65

70

75

3,623,156

26

LOGICAL EQUATIONS—SUBROUTINE
DISPLAY —SION—FIG. 23

(equals followed by S1011)
J13=G2211
J13=G0122
K13=G1112
K13=G1121-F24 YBFU
J13=00221
J1>=00202 Y ECD
K12=G1222
J11=G2100
111=G1102
K11=G1212
K11=G1211
K11=G2012 YSIN
J10=G2011
K10=G1222

IACE=G 1020 ES0
1BRS=G 1002

1C40~G 0200
1C40=C0122
IDBF=G1120-E23
K23=G 1120 F24 YKDN
K23=G1120E34 NKDN
K24=G1211
K$0=G0010
K$1=G1102 E40
IRDR=G0200

IDDL=~G0111 ES1
IDDR=GO211 ES1
IDHD=G 1012
IDHL=~G 1012
IDRD=G 0200 E40
IDRR=G 1202
IDRL=GO0112
HCF=G0200 E40 FS!
UBF=G0001
Jie~G1102
J24=G1120 YBFU
J43=G 1202
1431202
J43=G2112
J50=G0001
I81=G1102 E40
1IKBF=G2111
K21=G0102 F24 F5I

IRDR=G0Q112

1STO=G 1202
ISTO=G1122
K01=G 1120 YBFU-F14
{end of S1011}

LOGICAL EQUATIONS —SUBROUTINE
DETERMINE ARITHMETIC OPERATOR

—S1100—FIG. 24
(equatls followed by $1100)
J13=G0002 IRDR=G0210
J13=Go120 IRDR=G 1200 F4}
J13=G0102 YEZR ESO ISTO=G 1220
Ki13¥=Gl121 ISTO=G2101'NMOD
J12=G2012 ISTO=G2211
K 12=G0200 ITBS=G121¢0
K12=G1202 ITBS=G2011 YBFZ
K12=G0121' YEZR ITSB=G2011
J11=G1201 1C40=G0120
K11=G2011 1IC41=Go200
K11=G2110 1C41=G1002
110=GOI112 J100=G2001
K10=G1102 J00==G1200-E41 YEZR
K10=GOl112 YEZR J01=G0002
1DCF=Go121 J14=G1102
IDCF=G1200-F41 143=G2012
IKBF=G0121 J43=G1210
IKBF=G1120 K03=G1101
K02=G1001 140=G 0022
K24=G2121 (end of S1100)
KS0=G2011F23

LOGICAL EQUATIONS —SUBROUTINE

STATE OF MACHINE—S1101—FIG. 25

{equals followed by S1101)
J13=G2111
J13=G0120
K13=Gi211
K13=G1202

J12=G 1002
J12=(i0012 YEZR
K12=G0200
K12=G0102 YBFZ

J1)=
K11=G1012-YEZR F40
J10=G 1000
J10=G0112

1C40=G 1012
1C41=CG0120
12000121

Jad=G2102
K24=G 2002
K24=GIi112
K40="
K41=Go111

K $0=~G0002
IDCF=G0012
IDCP=(i1210-E40
1ESF=G0012 YLSD
IKBF=G 2000
IKBF=G0011
TRDR=G0112
IRDR=G1210°E40
ISTO=*
Jo1=Go111

3,623,156

27

K03=GO111
(end of $1101)

J21=Gooe1
122=(10201
J23=G1201
J34=G 1122
J32=G0001
JI=G0210-F21
J41=G 1002

LOGICAL EQUATIONS—SUBROUTINE
MBB §1110—FIG. 26

(equals followed by S1110)

J13=G3e11 IDCF=G116-E41
JI3=G0112-YBFZ ICF=G0002 E40
KiI3=G1100 NCF=~G1121
KI13=G2010E41 YEZR UCF=G1111
N2=Gi13t1 JOO=G0011
J12==G0200 E40 YDNE J3=G0121
J12=G1200-F41 YEZR J4o=~G 1121
K12=G 1200 Jai=G1102
K12=GI111 KO1=Goo1 1
K12=G1221 YDNE K03=G 1001 F41 YEZR
J11=G0132 IRDR=G 1002 Fd1
F11=G0221-E40 YDNE IRDR=G1210-E41
J11=G1100-'YMOD IRDR=G0002 E40
K11=Goo12 IRDR=001212
K11=G1120-E41 YEZR 1STO=G 2002
110=Go212 1STO~G2210
K10=G2211 ITRA~GO121
IC40=G0202 K32=G1211
IC40=G 1022 K50=G0121
1C41=G 2002 K41=Gl111
1IC41=G 2210 {end of §1110)

IDCF=G 1002 F41

LOGICAL EQUATIONS—SUBROUTINES
DIGIT ENTRY POSITION—EXPONENT UPDATE
& DIVIDE INITIALIZE—SIIN—FIGS. 27 & 28

(equals followed by S1111)

J13=G2110 1ESF=G0310
Ki1¥»=G1010 1ESF=G2010
K13=G2001 YLSD IBF=G0202
J113=Go1re IICF=G 0200
J123=G1201 YLSD IKBF=G 1300
J12=G 1211 YBFZ IRDR=G0212
JI123=~G1210-E50 ISTO=G2001
K13=Go102 1STO=G2122
K12=Gl112 1BF=GG120
K12=G3110-YBFZ J14=G1200-F S0
ni=Go102 J32=G2011
K11=Go311 J43=G1120
K11=G0112 J43=G0021
J10=G1102 J43=G2001-YLSD
J10=G1210 150=G1122
K10=G0oo1 KO1=GOo000 YBFZ
K10=G1211 K01=G1200-G1002
K10=G1021 YLSD K02=G0o0g Y BFZ
ICCF=G2010 Ko3=G1131
IC40=G2012 K24=~G1200F50
IC40=~G 1121 K24=G 1002
IC41=G2012 KSO=Gi112
IC41=Go210 {end of S1111)
IDCF=G1102

FLIP-FLOP DRIVER AND GATING

As indicated above, the calculator includes a plurality of
flip-flops. A number of different bistable devices may be used
for these flip-flops, but preferably, all of the flip-flops are con-
structed in the form of the J-K flip-flop illustrated in FIG. 29,
This particular flip-flop has several distinct advantages which
make it desirable in the calculator and in other situations
where bistable devices are used.

20

25

30

Kh

40

45

50

hh]

60

65

70

75

28

In connection with the description of the flip-flop, it should
be noted that the calculator has two general power sources, a
direct current source, and a clock source which delivers pulses
at a frequency of 700 kilocycles. The flip-flop has two J-K
input terminals labeled R & T respectively in FIG. 29, which
receive drive pulses. The two E-F output terminals 295 and
29U respectively which alternatively conduct a signal from the
direct current source, and the particular one of the E and F
terminals which conducts the direct current signal is deter-
mined by which of the J-K input terminals received the most
recent pulse.

As explained below, input pulses at J or K cause output
signals at F or E respectively, and simultaneous pulses at I and
K cause the signals at E and F to reverse.

The change in signals at E and F caused by pulses at J or K
or both J and K occurs at the end of the pulse which causes the
change. In other words, where the E terminal is conducting a
direct current and an input pulse is connected to the K ter-
minal, the first portion of the input pulse preconditions the
flip-flop to change state, and the preconditioned flip-flop
changes state at the end of the pulse to a condition with the F
terminal conducting the direct current and the E terminal not
conducting. Because of this mode of operation, it is possible to
exchange the contents of two flip-flops directly during a single
clock interval. For instance, where F40 and E24 are conduct-
ing before a clock interval, the connection of F40 1o J24 and
the connection of E24 to K40 during the clock interval will
cause the E24 signal to be transferred into flip-flop 40 and the
F40 signal to be transferred into flip-flop 24 simultaneously at
the end of the clock interval.

The actual operation of the flip-flop will be understood with
reference to FIG. 29 where reference letters appear which are
prefixed herein by the FIG. number and with reference to FIG.
29’ where the direct current output of terminal F is plotted on
a time scale against input pulses at terminals J and K.

The direct current output at terminal E is the reverse of the
F terminal output. It will be noted from this description that
this J-K flip-flop may be used without two diodes in situations
where an R-S flip-flop is desired, an R-S flip-flop being the
type of flip-flop in which the E-F outputs resulting from simul-
taneous J-K inputs (called R-S inputs) are not predictable.

Resistors 29C, 29D, 29F, and 29H in conjunction with
transistors 29B and 29G comprise a standard flip-flop.
Transistors 29A, 29J, resistors 29X, 29M, and capacitors 29L,
29N make up two identical flip-flop drivers, one for each side
of the flip-flop. Diodes 29P and 29Q result in the standard *'J-
K" flip-flop whereas the elimination of 29P and 29Q will result
in a standard “‘R-S$™" flip-flop.

Assume that the diodes 29P and 29Q are connected and
that the flip-flop input signals are in the period T, of FIG. 29°
i.e., clock high, 29A, 29B and 29J nonconducting, and 29G
conducting. At +=0,, an input is provided at the J input, 29R.
Transistor 29A will conduct causing the junction of 29L and
29X to assume a potential more negative than Vcc. Transistor
29B will become reverse biased, but remain cutoff. Current
passing upward through 29L will result in the voltage across
29L decreasing from its initial value of +Vcc. The application
of an input at 29R has not yet affected the state of the flip-
flop. When the signal at 29R is removed or interrupted,
transistor 29A is turned off. In regaining the charge lost when
29A was on, 29L conducts via 29X and the base of 29B. (A
small current flows in 29H, but is not relevant in this discus-
sion) The current flowing into 29B turns it on, resulting in the
flip-flop changing states from “0” to *1.” (The signal at ter-
minal E goes from 1 to 0, and the signal at terminal F goes
fromQOto 1)

During time ¢, no input signals occur and the flip-flop
remains in the *“1*' state. However, the input at 29T during 1,
will result in the flip-flop changing states froma 1" to a*0."

Thus far, diodes 29P and 29Q have had no effect on circuit
operation. However, during r, inputs occur simultaneously at
29R and 29T. Since 29G is conducting and 29B is cutoff, the
current that would normally enter the base of 29J is diverted
into the collector of 29G by 29Q. During f,, the circuit will

3,623,156

29

respond precisely as it did during #,. Correspondingly, during
f4, diode 29P will conduct and the circuit will respond as it did
during ¢,.

The voltage at V¢ during the first portion of any time period
f, is set 10 eliminate the deleterious effects of noise on the
input lines. Transistors 29A and 29) cannot conduct until
their input lines are more positive than Vc. V¢ is typically set
at+2.2 volts.

The currents entering 29R and/or 29T can be interrupted to
cause transferral of information from 291 or 29N to 29B or
29G respectively by swilching Vc more positive than the open
circuit input signal at 29R or 29T, or by diverting the input
current with diodes (as indicated in dashed lines in FIG, 29)or
transistors.

The transistors 29A and 29J, in addition to providing noise
immunity, operate as power amplifier. Signals need only be
present long enough to guarantee that the charge on 29L or
29N be sufficient to guarantee switching of 29B or 29G
respectively. The gating circuit dissipates no standby power.

Since switching is initiated by tuming 29A and 29B off, it js
evident that any “‘hazards” or faise input signals occuring at
the flip-flop inputs will be ignored as long as the transistors
29A and 29B remain cutoff.

INSTRUCTION LINES AND INSTRUCTION DRIVERS

As mentioned above in connection with the description of
FIG. 9, and in the explanation of the meaning of logical equa-
tions, transistor drivers such as 9D are used for driving each of
the instruction lines. Similar transistor drivers are used for
driving each of the subroutine drive lines such as the transistor
driver for the SO101 drive line in FIG. 9. As indicated in 9A
and 9C, the transistor drivers are turned on by selected com-
binations of output gates of the flip-flops, and as indicated in
9E, the instruction signal will advance one flip-flop or a com-
bination of flip-flops one step in a sequence determined by the
levels existing in the flip-flops and/or levels originating exteri-
or to the flip-flops at the onset of the instruction signal. Any
given flip-flop can respond to more than one instruction, and
an instruction can effect more than one flip-flop.

The transistor driver 9D and the corresponding driver for
50101 consist of two transistors 9G and 9H and a resistor 9L
A signal in the base of transistor 9G will cause current to flow
in the collector of 9G and the base of 9H. Transistor 9H will
turn on connecting the drive line 9K 1o the 15-volt emitter
supply voltage of transistor 9H. Current will then flow through
the combinatorial logic resistors 9B 1o effect the desired
Tesponses in devices which receive the drive signal; these
devices may, of course, be flip-flops, qualifier gates, or other
instruction drivers,

The use of these drivers provides two distinct advantages.
The amplifying power of each driver Provides a “power sup-
ply” for the group of devices driven by the driver directly at
the input of that group of devices, and since this “power sup-
ply” is turned off at all times when the group of devices is not
in use, the power consumption of the calculator is greatly
reduced. In this regard, it will be noted that the calculator in-
cludes 16 transistor drivers for the subroutine drive lines and
29 drivers for the instruction lines, but of these 45 “power
supplies,” only a small portion of these “‘power supplies,” typi-
cally two to five, are supplying power at any given time.

Secondly, the drivers provide noise immunity in the system
because the controlied voltage, indicated as 2.2 volts in FIG.
9, at the emitter of transistor 9G provides a controlled
threshold which signals must exceed before the driver turns
on. Thus, the input voltage at the base of 9G must exceed 2.2
volts before 9G turns, theredby excluding noise below 2.2 volts.

Transfer VECTORS

In order for one portion of a computing system (hereafter
called the common subroutine) to be used by several other
portions of the system, information (hereafter called the
transfer vector) for control upon exit from the common

25

30

40

45

h 1]

35

65

70

75

30

subroutine must be originated and placed in a storage area be-
fore entering the common subroutine. Control can then be
directed to the common subroutine. Upon completion of the
common subroutine, the transfer vector is recalled from
storage and analyzed (decoded) to direct control to the
prescribed place.

Except for the process of decoding the transfer vector, the
process is analogous to executing a “transfer and set index,”
ie., “TSX" instruction, in a digital computer to enter an

“‘open ended” computer subroutine followed by a “transfer
with a tag” instruction upon completion of the open ended
subroutine.

computer, the transfer vector con-
bits to define every possible
memory location in the machine, e.g., IBM 7094, or sufficient
bits to define a large number of memory locations so that an
indirect addressing technique can be used to direct control to
any of the possible memory locations. The technique to be
here used in the calculator differs from these methods in that
the number of bits in the transfer vector need only be as large
as the LOG, (or the next integer above LOG, if the LOG, is
not an integer) of the number of different transfer vectors.

Thus, the transfer vector stored upon entry to a common

subroutine is an encoded binary number, and when the

subroutine is completed, the encoded binary number is re-
called from storage, decoded and used to direct control to the
next routine.

The procedure by which the transfer vector is used in the
calculator will be apparent from the following sequence of
steps:

A. ENTRY —The transfer procedure is entered by giving an
ICAL instruction which causes the following instructions to
occur simultaneously.

L. 1111~ SFF—AIli subroutines are entered at condition 17
of the primary flip-flops. PFF entry information is accu-
mulated in the calling routine,

2. ITSB(SFF ~BFF without changing F24)—is determined
by the (F24) and (BFF). (F24) is fixed by the calling rou-
tine, while (BFF) became (SFF) via ITSB. Each subrou-
tine call is given from a different state as defined by (F24)
and (BFF). Thirty transfer vectors are possible since two
[11111, O1111] are used by the return transfer vector
routine.

- 111~ F43, F42, F41. This condition of F41,F42, and F43
selects the IAS location of auxiliary register MEMO or
MEM]1 as the location in which the transfer vector will be
stored. The calling routine puts 0—F40 for zero order
subroutines or 1 40 for first order subroutines.

4. 1200 +(SFF)—Each subroutine is entered with
(CFF}=Dy or E,, that is, the MSD of the mantissa or
characteristic. This procedure is taken to standardize the
calling process.

3. ISTO—The transfer vector determined in part 2 is stored
in the memory location determined in part 4.

B. RETURN—The transfer vectors stored in MEM 0 1AS or
MEM 1 IAS are recalled and decoded so that control can be
sent to the proper location depending on the location from
which the common subroutine was entered. The LSB of the
SFF (F10) defined whether the subroutine is a zero order
subroutine, (F10)=0, or a first order subroutine, (F10)=1.
The return of the transfer vector is started by the giving of in-
struction IRTN which issues the following instruction simul-
taneously.

1. 1000 —~PPF—The decoding of the transfer vector is done

in the subroutine $1000.

2. 1200 ~CFF—This establishes the MSD on exit.

3. 1111-+SFF—To be used during decoding.

4. 110—+F43, F42, F41, and F10 —~F40.

5. IRDR, which reads the transfer vector into the BFF.,

C. DECODE—As a result of steps B,-B,, the transfer vector
appears in the BFF, and control is sent to $1000. From this

In the general purpose
tains either sufficient binary

)

condition, the following commands are given.

3,623,156

31

1. ITBS—The transfer vector is sent to SFF for decoding. It
will be decoded from SFF rather then BFF because the
gates GOO0O to G2221 can be used.

2. ITVF if (F24)=], or ITVE if (F24)=0—This is the actual
decode command, However, the transfer vector as
defined by (F24) and (SFF) is either 01111 or 11111,
and in either case, the command ITVF or ITVE attempts
to send control to $1000. Were it not for the ITBS given
in step C1, the machine would lock up in $§10000. The
ITBS puts the actual transfer vector into the SFF and the
next clock period finds the real transfer vector in (F24)
and (SFF) so that the decode can return control to the
desired location.

DISPLAY

The digits 0-9 and the minus sign can be gencrated on the
CRT from the basic “E" trace shown in FIG. 30. This figure
shows two E's above each other because this configuration is
used in the calculator to trace the two lines of numbers cor-
responding to (KBD) and (ANS) simultaneously. Any number
of E traces could be generated above each other depending
entirely upon system requirements. By placing E traces front
to back as shown by the light lines in FIG. 31, a crosshatch
pattern if formed. Proper modulation of two successive front
to back E traces results in generation of the digits 0-9 as
shown in FIG. 31.

The circuitry for beam deflection and modulation is shown
in FIGS. 32-35. FIG. 35 shows a standard biasing arrangement
for a 3RP1 cathode-ray tube. The control grid (PIN2) is con-
nected to —volts volts and then the CRT beam is turned on by
applying an input to IACE. Three deflection signals are suffi-
cient to generate the E trace. They are left, right, and down
signals which are applied to pins 7, 6, and 9 respectively, of
the 3RP1 CRT. These three signals are generated by the left
deflection circuit, (FIG. 32), the down deflection circuit,
(F1G. 33), and the right deflection circuit, (FIG. 34).

Each deflection circuit consists of a resistor 32A, 33C or
34E connected to a high voltage (+1,200) source which
charges a capacitor 32B, 33D, or 3F. Since the deflection
voltages are small in comparison to the high voltage supply,
the signals are essentially linear. To restore any of the three
traces it is necessary to apply signals to transistors 32C, 33H,
or 34J. This will discharge the capacitors and prevent further
buildup of waveforms. Both the left defection circuit and the
down deflection circuit have the ability to interrupt or “‘hold™’
a waveform by applying a signal to transistors 32K or 33L.
This diverts the current that would normally charge the
capacitors 32B or 33D. Diodes 32M and 33N prevent the
capacitors from discharging.

One way to generate the E trace (FIG. 30) is to apply signals
at IDHL and IDHD to hold the left and down traces. During
this time no signal is applied to IDRR and the beam traces out
a horizontal line 30P. During the next time interval IDDR
turns on to restore the right trace 30Q. IDRR remains on while
the signals at both IDHL and IDHD are removed. The beam
thereupon traces out the skewed line 30R. The process is con-
tinued until the down trace must be restored 30S. Similarly,
when the leftmost excursion has been reached, a signal at
IDRL will restore the left trace.

The details of forming the modulating waveforms are shown
above in connection with the display routine.

CLOCK CIRCUIT

As mentioned above, the calculator employs a clock circuit
which controls the timing at which events occur. A variety of
different clock circuits might be used. However, the clock il-
lustrated by FIGS. 36 and 37 is preferred because it operates
at the desired high frequency, 700 kilocycles, and because it
provides good control of pulse shape and frequency stability
with changes in supply voltage.

Referring in detail to FIG. 36, the clock circuit includes a
transformer having N tumns in the primary per turn of the

20

25

30

40

45

50

55

60

65

70

75

32

secondary with a diode 36D, a capacitor 36C, and a resistor
36R,y in the primary circuit. The primary is connected to the
secondary through a grounded base transistor 36Q, and a re-
sistor J6R,,. Positive input voltage VCC is connected to the
primary, and negative input voltage VBB is connected to the
secondary through resistor 36R, which is grounded through
resistor 36R,. The secondary and the junction between 36R,
and 36R, are connected to the base of a transistor 36Q,. The
emitter of 36Q, is grounded, and the collector of 36Q, forms
the output terminal for clock pulses.

The operation of the clock will be understood with
reference to F1G. 37 where the collector voltage Vc Qg of
360Q, is plotted on a time linc above the collector current Q, of
36Q;. It should be noted that L.Q, also has a DC component
caused by 36R,, which is not illustrated in FIG. 37.

During o in FIG. 37, the inductor current builds up from
zero to ILX. When the blocking oscillator turns off, the induc-
tor current goes through 36D and charges 36C. The capacity
of 36C is very large, and the resultant voltage change across
36C is small.

Since L., the primary inductor, is discharging into a con-
stant voltage, the di/dt is known. Since the initial current and
the rate of decrease is known, one can determine when the
current reaches zero. During the discharge time a voltage is in-
duced into the secondary with a polarity causing 36Q, to be
reverse biased i.e., the dot side of the secondary goes positive.
The magnitude of the voltage is large enough to keep 36Q, off
as long as current flow in the primary during {oy. When the pri-
mary current reaches zero, the primary voltage abruptly goes
from EP to Vcc (FIG. 37). Correspondingly, the secondary
drops from (EP—Vcc/N) to zero. However, 36R, and 36R, are
selected so that with no voltage across the secondary, 36Q, is
forward biased; thus, a new cycle is begun. The on time is

determined from the equation
A Ln(N—1)
on 'R unN’ — (1)
At the end of ¢,,, the magnetizing current is
Vee
ILX = L_.,.[‘"’ (2)

During t,, the magnetizing current decreases at a rate given
by
di,_Ve

it~ La (3)

where i, is defined as the magnetizing current flowing in the
primary and Vc is defined as the voltage across C. Note that C
is large s0 that V¢ changes by a very small amount. For practi-
cal purposes, Vc will be assumed to be constant, ¢y can be
found from equations (2) and (3) by noting that ILX and
di,/dt are known, and that the off period ends when i{,=0.

ILXL,
Ve

oft =

(4)

From equations (2) and (4) it follows that

Veelon
Ve

oft =

(5)
or

o _Ve
ton Vee (5a)
This says that the shaded areas A, and A, in FIG. 37 are
equal. This must be so if the circuit is to work properly.
During 7,4, the average current i, ,ux entering D is
i=(1ILX/2) (6)

3,623,156

33

It is permissible by superposition to assign the entire
Lk tO go into 36C during t,; provided a discharge current
ix flows from 36C through 36R,,.

The total charge entering 36C is, during any given cycle,

given by
Qu=irivelor N
I1LX
Qo= Tt"" (8)
or

The charge lost from 36C during any cycle is,

Qour=1{lon+1lory) 9

or
Ve
Quut=Ru”(ton+tuH) (10)

In order that equilibrium exist, the incoming charge
must equal the outgoing charge.

Qin:Qout (ll)

or

LX V.
ITlu"=Ef'(lun+tnﬂ) -

(12)

However, ILX is given in equation (2) so that,

Vee t Ve
o"'ton=h,—(lon+lun)
L

2L, - (13)

Also, Ve can be op:caingg_iimilgequations (5) as,

_Vec t,,

lats

Ve

So that,

Veet on Lore_ Vee by

57, (ton~+tag)

Rort togs
or

Lott __fontion

2Lm—tol'l RD"

Solving for Ry gives,

2Ly

4
Ry 2L Loa
" o Las.

(156)

Notice that ¢4y is independent of Vcc. This means that one
will expect good frequency stability with respect to supply
volage changes. Also, notice that Loy is a function of ¢,,. This
means that one should first adjust R,, to obtain the proper /,,
and then adjust R, to obtain the desired Loy Also, it should be
noted that the EP, the peak overshoot voltage, is maintained
at an absolute minimum.

KEYBOARD ENCODING MATRIX

As mentioned above, information is entered in the calcula-
tor by depressing a plurality of keys which are divided into two
Broups, operand or number entry keys, and operator or data
manipulation keys. Each key is associated with an electric
switch which is closed when the key is depressed, and the
switches are connected in a keyboard encoding matrix which
(1) provides a signal indicating that a key is down, and (2)
generates a unique five-bit code identifying the key.

As illustrated in FIG. 38, the keyboard encoding matrix
comprises five wires NQ20-NQ24 on which the five-bit code
appears and a plurality of transverse wires connected to a plus

5

20

25

30

35

40

45

50

55

60

65

70

75

34

voltage Vcc with each transverse wire carrying a resistor 38D
and connected to one of the operand keys and one of the
operator keys. The transverse wires are code connected by
diodes 38) to the wires NQ20-NQ23, and all of the operator
keys are connected to the wire NQ24 through transistor 38E.
It will be noted that the number of keys is less than the number
of possible combinations of the five-bit code, and for this
reason, six of the five-bit code characters are omitted as in-
dicated by the phantom line connections in FIG. 38. The
phantom components may be added to the matrix as where
further functions and subroutines are added to the calculator
for performing roots, exponential functions, and the like.

One side of each of the operator switches is connected, via
wire 38B, to the base of transistor 38E, the emitter of which is
grounded. The collector of 38E is connected directly to wire
NQ24 and through a diode to terminal NKDN,

One side of each of the operand switches is connected, via
wire 38C, to the base of transistor 38F whose emitter is
grounded. The collector of 38F is directly connected to
NKDN and connected through a diode and resistor 38H 1o
+Vcc, and the resistor-diode junction is connected through a
second diode to the base of transistor 38G. The emitter of 38G
is grounded, and its collector is connected to a terminal
YKDN. The plus sides of the zero operand and ERR operator
keys are connected to a terminal YNZE.

With no switch 38A closed, signals at NQ20-NQ24, NKDN
and YNZE are not at ground potential. Only the signal at
YKDN is at ground potential as a result of the current through
38H which holds transistor 38G on at saturation. When any
switch closes, current flows through a source resistor 38D and
into the base of either transistor 38E or 38F depending on
whether the switch is an operator switch or an operand switch.
Whenever either of the transistors 38E or 38F tumns on,
transistor 38G turns off causing the potential at YKDN to rise
and indicate to the control logic that a key is down. At the
same time, the signal at NKDN goes to ground through the
collector emitter path of the transistor 38E or 38F which is on.
The system logic then provides a delay period to eliminate the
effect of contact bounce and then looks at NQ20f-NQ24 0
determine which key is down. At the end of the delay period,
the lines NQ20-NQ24 1o form an encoded representation of
the switch depressed. The lines representing logical zeros in
the code are grounded via the encoding diodes 38J and the
base-emitter path of one of the transistors 38E and 38F. The
lines representing logical ones are not connected to ground.

TESTER

The calculator described herein is designed for use with a
unique tester. The calculator will operate in its intended
manner without the tester present, However, the tester can be
plugged into the calculator for final check out of newly manu-
factured calculators and for testing components and subrou-
tines of the calculator during maintenance and repair.

The tester has 23 similar components illustrated by the
dashed box in FIG. 39 with one component for each of the cal-
culator flip-flops except the flip-flops F60-F63. Each of these
tester components has two terminals 39L and I8M cor-
responding to the E and F terminals of the flip-flop with which
the tester component is to be used. These terminals 39L and
39M are physically connected together in multiterminal plugs
which may be plugged into the calculator at BDD for connec-
tion to the E-F terminals of the flip-flops Each of these tester
components also has two manually operable switches 39S and
39X which may be manipulated during testing as explained
below.

All of the 39S switches may be set 10 a predetermined con-
dition of the 23 flip-flops to cause the calculator to run until
the 23 flip-flops reach that predetermined condition and then
stop. Use of this group of switches permits the testing of
sequences of calculator steps since the switches can be set to
stop calculator operation at any selected normal condition
thereby verifying the fact that the calculator has gone through
the steps necessary to reach that condition.

3,623,156

35

All of the 39X switches can be set to a predetermined con-
dition of the 23 flip-flops to force the flip-flops into that
predetermined condition. The 39X switches may thus be used
to set the flip-flops in the last condition which they would as-
sume before reaching the condition set on the 39S switches.
The 39S and 39X switches may be used in this way to verify
the fact that the calculator is performing properly in any
desired step of any normal subroutine or operation.

As mentioned above, the tester has a plurality of output ter-
minals NRUN, YRUN, YSST, NSST, YSSR, and YSSS which
are connected to the control logic of the calculator 8V at 8CC
by a six-terminal plug so that the corresponding qualifier
signals will be received by the control logic (see for instance
YRUN in FIG. 12). These qualifier signals permit the tester to
control the calculator as mentioned below. When the tester is
not in use, the tester plug may be replaced by a patch plug in
the calculator which constantly supplies the qualifier signals,
such as YRUN=1, indicating no control by the tester.

The tester also contains six manually operable switches for
controlling specific calculator functions. The “*dump” switch
39Z causes flip-flops to change state through the 39X
switches. The ““halt” switch 39F can be used to stop running
operation of calculator steps in connection with single step,
read, and store switches 39A, 39B, and 39C respectively, and
the “conditional halt” switch causes the calculator to stop
when it reaches the flip-flop conditions set on the switches
39S. The tester also includes a lamp 39V in each flip-flop
component of the tester to indicate the instantaneous condi-
tion of the flip-flop. The detailed operation of the tester will be
understood from the following description.

The tester consists of a means for generating two single step
qualifiers YSST and NSST from a single step switch 39A; a
means for generating a single step read signal YSSR, 39B; and
a single step store signal YSSS, 39C. In addition, two qualifiers
NRUN and YRUN are formed by transistors 39D and 39E. A
switch 39F will cause YRUN to become a logical “0" (zero
volts) whenever it is in the halt position, because 39D will be
off causing 39E to conduct. The signal YRUN will be a logical
one when both 39F and 39G are in the run position since cur-
rent through 39H will turn 39D on. When 39G is in the condi-
tional halt position, current may or may not be on depending
upon the input signals 39L and 39M coming from system flip-
flops. FIG. 39 shows three of the 23 flip-flop outputs con-
nected to the tester (all but F63-F60 are connected in the ac-
tual tester). Current will flow into the base of 39D as long as
there is a path from one of the conditional halt resistors 39N
through a conditional halt diode 39P or 39Q, the conditional
halt bus 39R and into 39D. Current may be interrupted in one
of two ways. First, it can be interrupted by placing a condi-
tional halt switch 39S in the middle or “don’t care” position
or, it can be diverted from 39R by the flip-flop via diodes 39T
or 39U. In the boxed area, current through 39N would not
enter 39R as long as FO1=0 (EO1=1). Thus, by preselecting
the condition halt switches, and setting 39G to the conditional
halt position, signal at YRUN will remain high until the condi-
tions set in the conditional halt switches are met.

The lamp 39V indicates the state of a flip-flop connected to
it. A bright condition occurs when the “E” or zero side of the
flip-flop is zero volts or when the flip-flop is in the one condi-
tion. Resistor 39W maintains current through the lamp 39V
and prevents switching surge currents.

The bottom three position switches 39X cause the condi-
tions set therein to be set into the flip-flops by grounding the
collectors to which they are connected via diodes 39Y when
switch 39Z is placed in the “"dump” position. Diodes 39Y iso-
late the various flip-flops from each other. No change will
occur in a flip-flop when its conditioning switch 39X is in the
middle position.

Iclaim:

1. A calculator having: a primary set of flip-flops for
designating operating routines of the calculator; primary set
control means for changing the condition of the primary set of
flip-flops; a secondary set of flip-flops for designating a dif-
ferent sequence of operations to be performed in each operat-

10

20

25

30

3s

40

45

50

35

60

65

70

75

36

ing routine; secondary set control means connected to the
secondary set of flip-flops for advancing the secondary set of
flip-flops through each of these sequences of operations in
response to the existing condition of the secondary set of flip-
flops, exterior signals, and elements controlled by the secon-
dary set of flip-flops; and working control means connected to
the secondary set of flip-flops for controlling arithmetic opera-
tions in response to the secondary set of flip-flops.

2. The calculator of claim 1 having: a common routine con-
trol means connected to the secondary set of flip-flops for
changing the condition of the primary set of flip-flops; said
common routine control means including means for setting
the primary set of flip-flops to conditions designating common
operating routines in response to a plurality of different condi-
tions of the secondary set of flip-flops; and recording and
reading means connected to the secondary set of flip-flops for
recording a signal characteristic of the condition of the secon-
dary set of flip-flops at the time of operation of the common
routine control means and for reading the recorded signal at
the end of a common operating routine; said recording and
reading means having encoding means for transforming the
signal read thereby into a signal denoting a condition which
the primary set of flip-flops should assume after the common
operating routine.

3. The calculator of claim 1 having: a random access
memory; means for writing data into and reading data from
the memory; and means connected between the reading
means and the secondary set of flip-flops for energizing the
reading means at irregular intervals responsive to the condi-
tion of the secondary set of flip-flops.

4. The calculator of claim 1 having: a power supply; a
keyboard; keyboard encoders; means for performing
arithmetic operations; a cathode ray tube for displaying the
results of said arithmetic operations; and a plurality of random
access memories.

§. The calculator of claim 1 having: a plurality of groups of
gates connected to the secondary set of flip-flops with one
group of gates including the secondary set control means and
working control means; normally “off”’ power means for each
of the groups of gates; and means connected between the pri-
mary flip-flops and the power means for tuming on one of the
power means for each of the operating routines designated by
the primary flip-flops.

6. An electronic calculator including an input unit, includ-
ing a memory unit into which data may be written and from
which data may be read, being responsive to data from the
input unit and to operating states within the calculator itself
for executing groups of one or more instructions to make
selected calculations employing data from one or both of the
input and memory units and to give an output indication of the
results of those calculations, said groups of one or more in-
structions being executed in a plurality of subroutines includ-
ing at least one common subroutine that is employed with a
plurality of the remaining subroutines to make the selected
calculations and provide an output indication of the results of
those calculations, and including programming means for
sequentially designating each group of one or more instruc-
tions to be executed in each of said subroutines, wherein said
calculator is improved in that means is responsive to execution
of at least one group of one or more instructions in each of
said plurality of the remaining subroutines for writing a
selected plurality of bits representing a required group of one
or more instructions to be executed in a required subroutine
upon completion of a designated common subroutine into the
memory unit and in that means is responsive to completion of
the designated common subroutine for reading this selected
plurality of bits from the memory unit and decoding them for
setting the programming means to designate the required
group of one or more instructions in the required subroutine.

7. The calculator of claim 6 wherein the programming
means comprises a group of flip-flops for sequentially
designating each group of one or more instructions to be ex-
ecuted in each of said subroutines, the selected plurality of

3,623,156

37

bits written into the memory unit is less In number than the
plurality of bits provided by said group of fQlip-flops, and the
selected plurality of bits read from the memory unit upon
completion of the designated common subroutine Is expanded
for setting said group of flip-flope to designate the required
group of one or more instructions in the required subroutine.

8. The calculator of claim 7 wherein the selected plurality of
bits written into the memory unit is provided by part of said
group of flip-flops.

9. An electronic calculator including an input unit, includ-
ing a memory unit into which data may be written and from
which data may be read, being responsive to data from the
input unit and to operating states within the calculator itself
for executing groups of one or more instructions to make
selected calculations employing data from one or both of the
input and memory units and to give an output indication of the
results of these calculations, including a program register for
sequentially designating each group of one or more instruc-
tions to be exccuted in a subroutine, including a memory ac-
cess register for receiving information to be written into or
read from the memory unit, including first transfer means for
enabling at least a portion of the contents of the program re-
gister to be directly transferred into the memory access re-
gister, and including second transfer means for enabling at
least a portion of the contents of the memory access register to
be directly transferred into the program register.

10. The calculator of claim 9 wherein said program register
comprises a first group of flip-flops, said memory access re-
gister comprises a second and smaller group of flip-flops, said
first transfer means is connected between part of the first
group of flip-flops and the second group of flip-flops for
enabling the second group of flip-flops to be set 10 the state of
said part of the first group of flip-flops, and said second
transfer means is connected between the second group of flip-
flops and said part of the first group of flip-flops for enabling
said part of the first group of flip-flops to be set to the state of
the second group of flip-flops.

11. The calculator of claim 9 wherein said program register
comprises a first group of logic elements, said memory access
register comprises a second and smaller group of logic ele-
ments, said first transfer means is connected between part of
the first group of logic elements and the second group of logic
elements for enabling the second group of logic elements to be
set to the state of said part of the first group of logic elements,
and said second transfer means is connected between the
second group of logic elements and said part of the first group
of logic elements for enabling said part of the first group of
logic elements to be set to the state of the second group of
logic elements.

12. A calculator comprising;

input means for entering information into the calculator;

memory means for storing information in the calculator;

processing means for performing a plurality of different rou-
tines, each having a different sequence of states, to make
different calculations and for executing a plurality of dif-
ferent instructions, one or more being executed during
one or more states of each routine, to perform the dif-
ferent routines;

a primary set of logic clements having a plurality of different
operating conditions for designating the different routines
to be performed by the processing means;

a secondary set of logic different operating conditions for
sequentially designating the states of each routine
designated by the primary set of logic clements;

said processing means including control means responsive
to the operating conditions of the primary and secondary
sets of logic elements, operating conditions of the
processing means, and information from the input or
memory means for changing the operating conditions of
the primary and secondary sets of logic elements to
designate each routine and, sequentially, each state
thereof to be performed in making a selected calculation;
and

20

25

30

35

40

45

50

55

60

65

70

75

38

output means for indicating the result of the selected calcu-
lation.

13. A calculator as in claim 12 wherein:

said processing means is operable for performing some rou-
tines employing a common subroutine also having a dif-
ferent sequence of states; and

said control means is responsive to an operating condition
of the secondary set of logic elements designating a state
in each of these routines, during which state a subroutine-
calling instruction is to be executed, for setting the prima-
ry set of logic elements to an operating condition
designating the common subroutine and for storing away
a retum code indicating a routine or subroutine and the
next state to be performed therein upon completion of
the common subroutine;

said control means being operable upon completion of the
common subroutine for decoding the stored return code
to set the primary and secondary sets of logic elements to
operating conditions designating a routine or subroutine
and the next state to be performed therein by the
processing means.

14. A calculator as in claim 13 wherein said control means
stores the return code in the memory means and, upon
completion of the common subroutine, reads the return code
from the memory means and decodes it to set the primary and
secondary sets of logic elements to operating conditions
designating a routine or subroutine and the next state to be
performed therein by the processing means.

18. A calculator as in claim 14 wherein the return code
stored in the memory means and read therefrom is derived
from the operating condition of at least a portion of the prima-
ry and secondary sets of logic elements.

16. A calculator as in claim 15 wherein the return code
stored in the memory means and read therefrom is derived
from the operating condition of the secondary set of logic ele-
ments,

17. A calculator as in claim 12 wherein:

said memory means comprises a random access memory;

said control means includes first means for writing informa-
tion into and reading information from the random access
memory; and

said control means further includes second means respon-
sive to an irregularly recurring operating condition of the
secondary set of logic elements designating a state, during
which a memory-access instruction is to be executed, for
energizing the first means.

18. A calculator as in claim 12 wherein:

said input means comprises a keyboard and a keyboard en-
coder for entering information into the calculator;

said memory means comprises a random access memory,
and

said output means comprises a digital display for displaying
the result of the selected calculation.

19. A calculator as in claim 12 wherein said processing and

control means includes:

a plurality of normally “‘off” sources of power, each being
provided for an associated different one of the different
routines or instructions; and

a plurality of gates connected between the normally “off
sources of power and the primary or secondary sets of
logic elements for turning “on” each normally "off"
source of power when the routine or instruction as-
sociated therewith is designated by the operating condi-
tion of the primary or secondary set of logic elements.

20. A calculator comprising;

input means for entering information into the calculator;

memory means for storing information in the calculator;

processing means for performing a plurality of different rou-
tines and for performing a different sequence of groups of
one or more instructions during each of these routines;

a primary set of logic elements for designating the different
routines as they are to be performed by the processing
means;

3,623,156

39

a secondary set of logic elements for sequentially designat-
ing the groups of one or more instructions as they are to
be performed by the processing means during the rou-
tines designated by the primary set of logic elements;

said processing means including control means responsive
to the state of the processing means, the state of the pri-
mary and secondary logic elements, and information from
the input or memory means for controlling the primary
and secondary sets of logic elements to designate each
routine and, sequentially, each group of one or more in-
structions to be performed during each routine in making
a selected calculation; and

output means for indicating the result of the selected calcu-
lation.

21. A calculator as in claim 20 wherein:

said processing means is operable for performing some rou-
tines including a common subroutine; and

said control means is responsive to a subroutine-calling in-
struction designated by the secondary set of logic ele-
ments for controlling the primary set of logic elements to
designate the common subroutine and for storing away a
return code indicating the next group of one or more in-
structions to be performed in a designated routine or
subroutine upon completion of the common subroutine;

said control means being responsive to a subroutine-exiting
instruction designated by the secondary set of logic ele-
ments upon completion of the common subroutine for
decoding the stored return code and thereby controlling
the primary and secondary sets of logic elements to
designate a routine or subroutine and the next group of
one or more instructions to be performed therein by the
processing means.

22. A calculator as in claim 21 wherein said control means
stores the return code in the memory means and, upon
completion of the common subroutine, reads the return code
from the secondary sets of logic elements to designate a rou-
tine or subroutine and the next group of one or more instruc-
tions to be performed therein by the processing means.

23. A calculator as in claim 22 wherein the return code
stored in the memory means and read therefrom comprises
the state of at least a portion of the primary and secondary sets
of logic elements.

24. A calculator as in claim 23 wherein the return code
stored in the memory means and read therefrom comprises
the state of the secondary set of logic elements.

25. A calculator comprising:

input means for entering information into the calculator;

memory means for storing information into the calculator;

processing means for performing a of different routines,
each of which has a different sequence of states and some
of which employ a common subroutine also having a dif-
ferent sequence of states, and for executing a plurality of
different instructions, one or more of which are executed
during one or more states of each routine or subroutine as
determined by each such state;

programming means for designating each routine or subrou-
tiné and, sequentially, each state thereof to be performed

15

20

25

30

35

40

45

50

55

60

635

70

75

40

by the processing means in making a selected calculation;

said processing means including control means responsive
to designation of a state, during which a subroutine-
calling instruction is to be executed, for causing the pro-
gramming means to designate the common subroutine
and for storing away a return code indicating the next
state of a routine or subroutine to be performed upon
completion of the common subroutine;

said control means being operable, upon completion of the
common subroutine, for decoding the stored return code
and thereby causing the programming means to designate
the next state of a routine or subroutine to be performed
by the processing means; and

output means for indicating the result of the selected calcu-

lation.

26. A calculator as in claim 25 wherein said control means
stores the return code in the memory means and, upon
completion of the common subroutine, reads the return code
from the memory means and decodes it for causing the pro-
gramming means to designate the routine or subroutine and
the next state thereof to be performed by the processing
means.

27. A calculator comprising:

input means for entering information into the calculator;

memory means for storing information in the calculator;

processing means for performing a plurality of different rou-
tines employing at least one common subroutine, each
routine and subroutine having a different sequence of
states, and for executing a plurality of different instruc-
tions, each instruction being executed during at least one
state of at least one routine or subroutine;

said processing means including control means for designat-

ing each routine of subroutine and, sequentially, each
state thereof to be performed by the processing means in
making a selected calculation;

said control means being responsive to a common-subrou-

tine-calling instruction for storing away a return code in-
dicating the next state of a routine or subroutine to be
performed upon completion of the called common
subroutine;

said control means being operable upon completion of the

called common subroutine for decoding the stored return
code to designate the next state of a routine or subroutine
to be performed by the processing means; and

output means for indicating the result of the selected calcu-

lation.

28. A calculator as in claim 27 wherein said control means
stores the return code in the memory means and, upon
completion of the called common subroutine, reads the return
code from the memory means and decodes it to designate the
next state of a routine or subroutine to be performed by the
processing means.

29. A calculator as in claim 28 wherein the return code
stored in the memory means and read therefrom comprises a
first plurality of bits and is decoded into a larger second plu-
rality of bits to designate the next state of a routine or subrou-
tine to be performed by the processing means.

» » L3 » »

Sheet 1 of 9
UNITED STATES PATENT AND TRAL +*MARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 3,623,156
DATED : November 23, 1971
INVENTOR(S) : Thomas E. Osborne

It is certified that error appears in the above—identified patent and that said Letters Patent
are hereby corrected as shown below:

Column 2, lins 75, "4+9.999999999v¢109%" should read
-- +9.999999999x1079 --;

Column 3, line 66, "102" should read -- 1023) --; line 67,
delete "3)'";

Column 4, at approximately line 26, "AND" should read
~= ANS --;

Colum 5, line 1, between "a'"' and '"arithmetic' insert

-=- &+ --; line 5, between "a" and "arithmetic'" insert -- < --;
line 10, between "a'" and "arithmetic" insert -- = --; line 11
between "a" and """ insert -- & --; line 16, between "a' and
"," insert -- + --; at approximately line 40, between "a' and
"," insert -- X --; line 46, between "is'" and "," insert

-= <+ --; line 51, between "is'" and "," insert -- &+ --; line 63,
between "a'" and "arithmetic'" insert -- %+ --; line 71, after
"the" (second occurrence) insert -- =+ --; line 73, between

"and" and "arithmetic'" insert -- =+ --;

Column 7, line 18, between ''the' and '"preceding" insert
-- two --; at approxlmately line 47, "X, ," should read

== X’ Ty =7

Column 9, at approximately 11ne 42, between "quotient"
and "ANS" insert -- —» -=-; line 55, "the see" should read
-- see the --;

Sheet 2 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 3,623,156
DATED : November 23, 1971
INVENTOR(S) Thomas E. Osborne

It is certified that error appears in the above—identified patent and that said Letters Patent
are hereby corrected as shown below:

Column 10, line 14, between ''The' and '"'subroutine' insert
-- add --; line 31, "transitions," (first occurrence) should
read -- 9 --;

Column 11, line 45, '"8,4074" should read -- 8.4074 --;

Column 12, line 53, "THis" should read -- This --;
line 54, "OF" should read -- of --;

Column 13, line 5, between "(WIA)" and "0" insert
-= # ==; line 6, "(WIA?#O" should read -~ (WIA)=0 --; line 7,
between "(TIA)" and "0" insert -- # --; line 8, "(TIA?#O"
should read -- (TIA)=0 --; line 47, between ""is' and "and"
insert =- < ==

Column 14, line 10, between '"(WEjp)'" and "0" insert
-= # ==

Colum 15, line 20, this table should read

- FLIP FLOP ASSIGNMENTS AND PRIMARY USES

Primary Flip Flops (PFF), used to identify subroutines.

Secondary Flip Flops (SFF), used to identify states
within subroutines.

ol ol o OO0
WN==O WN=O

(this table is continued on the next sheet)

Sheet 3 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 3,623,156

DATED

November 23, 1971

INVENTOR(S) : Thomas E. Osborne

It is certified that error appears in the above—identified patent and that said Letters Patent

are hereby corrected as shown helow:

oY Ui BDE DPLOLWWLWW NNNNN
WNhNH=O HO NHEHO WWNHRO N RO

Bit Flip Flops (BFF), used as data register for
information into and out of the core memory.

Character Flip Flops (CFF), used to define character
addresses in core memory.

Word Flip Flops (WFF), used tb define word addresses
in core memory.

Temporary Flip Flops (TFF), used as temporary informa-
tion buffers such as for carry bits during an add.

Memory Flip Flops (MFF), used to determine core memory
cycling and to allow the tester to be connected to the
system,

Column 15, lines 71-75 should read

F10 = 1 F10 = 0
Do —= D9 Do —» E1
D9 —» Do El — Do
Eo — E1 D9 — Eo

El — Eo Eo -— D9 --3

’

Sheet 4 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 3,623,156
DATED : November 23, 1971
INVENTOR(S) : Thomas E. Osborne

Itis certified that error appears in the above—identified patent and that said Letters Patent
are hereby corrected as shown below:

Column 16, line 32, between '"(1, 0, 0)" and '"F33"
insert == — --;

Column 17, line 10, "YMTM" should read -- YWIM =--;

Column 19, at approximately line 31, "EL" should read
-= E1 --; at approximately line 32, "FS" should read -- ES =-;
line 55, "8-4-21" should read -- 8-=4-2-1 --;

Column 20, line 27, "IKBF;" should read -- IKBF and --;
line 69, delete "IKBF=YGATE";

Column 21, at approximately line 23, '"Wherein'" should
read -- Where in --;

Columns 21-22, under the heading "LOGICAL EQUATIONS -
INSTRUCTIONS'", the right-hand column should be deleted and
incorporated into the left-hand column as follows:

(1) 1lines 1-19 in the right-hand column should be
inserted after line 20 (J10=*) of the left-hand column;

(2) 1lines 20-45 in the right-hand column should be
inserted after line 40 (end of 'IDCF) of the left-hand column;
(3) 1lines 46-68 in the right-hand column should be
inserted after line 67 (end of IICF) of the left-hand column;
(4) 1lines 69-97 in the right-hand column should be

inserted after line 94 (K13=G1021) of the left-hand column;

(5) 1lines 98-109 in the right-hand column should be
inserted after line 105 (J13=*) of the left-hand column;

Sheet 5 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 3,623,156
DATED ; November 23, 1971
INVENTOR(S) : Thomas E. Osborne

It is certified that error appears in the above—identified patent and that said L etters Patent
are hereby corrected as shown below

Column 22, under the heading 'LOGICAL EQUATIONS -
SUBROUTINE ACCUMULATE - S0000 - FIG. 13", line 9 of the left-
hand column, "K12=G1102-F41" should read -- K12=G1102-F41-YMSD --{
line 15 of the left-hand column, "K2=G2010-F50'" should read
-- K23=G2010-F50 --; line 1 of the right-hand column,
"F11=G2220-YBFZ" should read -- J11=G2220-YBFZ --; line 20 of
the right-hand column, '"=*" should read -- ISTO=* --; under
the above-mentioned heading, the right-hand column should be
deleted and incorporated into the left-hand column as follows:

(1) 1lines 1-14 in the right-hand column should be
inserted after line 14 (K10=G0012) of the left-hand column;

(2) 1lines 15-24 in the right-hand column should be
inserted after line 23 (K24=G0112) of the left-hand column;

Column 23, under the heading "LOGICAL EQUATIONS -
SUBROUTINE MULTIPLY - S0001 - FIG. 14", line 10 of the left-
hand column, "IICF=G111:F40" should read -- IICF=Gllll-F40 --;
line 18 of the left-hand column, delete "K24=G0210-F50";
after line 17 of the right-hand column (IKBF=G0210), insert
-- K24=G0210°F50 -~-; under the above-mentioned heading, the
right-hand column should be deleted and incorporated into
the left-hand column as follows:

(1) 1lines 1-16 in the right-hand column should be
inserted after line 16 (K13=G1020:YBFZ) of the left-hand
column;

(2) lines 17-24 of the right-hand column should be
inserted after line 24 (J51=G2001) of the left-hand column;

Column 23, under the headinﬁ "LOGICAL EQUATIONS -
SUBROUTINE SUM - S0010 - FIG. 15", line 5 in the right-hand
column (J43=G0100) should be directly in line with the other
items in this columm;

Sheet 6 of 9
UNTITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 3,623,156
DATED : November 23, 1971
INVENTOR(S) : Thomas E. Osborne

It is certified that error appears in the above—identified patent and that said Letters Patent
are hereby corrected as shown below:

Column 23, under the headinﬁ "LOGICAL EQUATIONS -
SUBROUTINE ADD - S0011 - FIG. 16", line 16 of the left-hand
column, "TDCF=G1211" should read -- IDCF=G1l21ll --; line 10 of
the right-hand column, '""K51=G1102-YBEN" should read
-- K51=G1102 -YBFN --;

Column 24, under the heading '"LOGICAL EQUATIONS -
SUBROUTINE NORMALIZE - S0100 - FIG. 17", line 9 of the left-
hand column, "K11=G0220-YBEN" should read -- K11=G0220-'YBFN --;
line 3 of the right-hand column, ''K12=" should read =--
K12=G2110 --; lines 23-24 of the right-hand column should be
directly in line with the other items in this column and
should read -- (end of S0100) --; under the above-mentioned
heading, the right-hand column should be deleted and incor-
porated into the left-hand column as follows:

(1) lines 1-5 of the right-hand column should be
inserted after line 6 (K13=G2110-:YBFZ) of the left-hand column;

'(2) 1lines 6-24 in the right-hand column should be
inserted after line 22 (J41=G0022) of the left-hand column;

Colum 24, under the heading '"LOGICAL EQUATIONS -
SUBROUTINE SHIFT - S0101 - FIG. 18", line 19 of the left-hand
column, "J43=G12002-YMSD" should read -- J43=G1201-YMSD --;
line 7 of the right-hand column, "IKBE=G0002'" should read
-- IKBF=G0002 --; under the above-mentioned heading, the
right-hand column should be deleted and incorporated into
the left-hand colum as follows:

(1) 1lines 1-5 in the right-hand column should be
inserted after line 6 (J12=G0002) of the left-hand column;

(2) 1lines 6-14 of the right-hand column should be
inserted after line 20 (J43=G0210-YMSD-F51) of the left-hand
column;

Sheet 7 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 3,623,156
DATED ; November 23, 1971
INVENTOR(S) : Thomas E., Osborne

It is certified that error appears in the above—identified patent and that said Letters Patent
are hereby corrected as shown below:

Columns 24-25, under the heading '"LOGICAL EQUATIONS -
SUBROUTINE COMPLEMENT & EXPONENT UPDATE - SO0110 - FIGS. 19 & 20",
the right-hand column should be deleted and incorporated into
the left-hand column as follows:

(1) 1lines 1-10 of the right-hand column should be
inserted after line 11 (K10=G1002) of the left-hand column;

(2) 1lines 11-18 in the right-hand column should be
inserted after line 19 (IRDR=G1022) of the left-hand column;

Column 25, delete the heading "LOGICAL EQUATIONS -
SUBROUTINE ENTER DIGIT - S1001 - FIG. 22" (first occurrence);

Column 25, under the heading '""LOGICAL EQUATIONS -
SUBROUTINE ENTER DIGIT - S1001 - FIG. 22", the right-hand
column should be deleted and incorporated into the left-hand
colum as follows:

(1) 1lines 1-22 of the right-hand column should be
inserted after line 23 (IDCF=G2220) of the left-hand column;
(2) 1lines 23-27 of the right-hand column should be
inserted after line 29 (IRDR=G1220) of the left-hand column;

Column 26, under the heading ''LOGICAL EQUATIONS -
SUBROUTINE DISPIAY - S1011 - FIG. 23", line 19 of the left-hand
column, "IC40=G0122" should read -- IC40=G0112 --; under the
above-mentioned heading, the right-hand column should be
deleted and incorporated into the left-hand column as follows:

(1) 1lines 1-18 of the right-hand column should be
inserted after line 20 (IDBF=G1120:E23) of the left-hand column;

(2) 1lines 19-23 of the right-hand column should be
inserted after line 26 (IRDR=G0200) of the left-hand column;

Sheet 8 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 3,623,156
DATED ; November 23, 1971
INVENTOR(S) : Thomas E. Osborne

It is certified that error appears in the above—identified patent and that said L etters Patent
are hereby corrected as shown below:

Column 26, under the heading "LOGICAL EQUATIONS -
SUBROUTINE DETERMINE ARITHMETIC OPERATOR - S1100 - FIG. 24",
line 18 of the right-hand columm, '"K03=G1101' should read
-- K03=G100l --; under the above-mentioned heading, the
right-hand column should be deleted and incorporated into
the left-hand column as follows:

(1) 1lines 1-18 of the right-hand column should be
inserted after line 19 (IKBF=G1120) of the left-hand columm;
(2) 1lines 19-20 of the right-hand column should be
inserted after line 22 (K50=G2011:-F23) of the left-hand

column;

Columns 26-27, under the heading "LOGICAL EQUATIONS -
SUBROUTINE STATE OF MACHINE - S1101 - FIG. 25", the right-
hand column should be deleted and incorporated into the
left-hand column as follows:

(1) 1lines 1-17 in the right-hand column should be
inserted after line 23 (J41=G1002) of the left-hand column;

Column 28, line 64, "sion)'" should read -- sion.) --;
line 67, "1)" should read -- 1.) --;

Column 29, line 17, "amplifier" should read
~- amplifiers --; line 70, "Transfer'" should read -- TRANSFER --;

Column 30, line 47, '"MEMO" should read -- MEM 0 --;
line 48, "MEM1" should read MEM 1 --; line 51, "(SFF)" should
read -- CFF --; line 65, "instruction' (second occurrence)
should read -- instructions =-;

Column 31, line 31, "-volts'" should read -- -15 --;
line 56, "IDRR" should read -- IDDR --;

Sheet 9 of 9
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 3,623,156
DATED ; November 23, 1971
INVENTOR(S) : Thomas E. Osborne

It is certified that error appears in the above—identified patent and that said Letters Patent
are hereby corrected as shown below:

Column 32, line 13, after ''current" insert -- I, --;
line 29, "flow" should read -- flows =--;

Column 33, line 2, "iLAVE" should read -- ilAVE -

at approximately line 60, "EP" should read -- Ep =-;

Column 34, line 40, "NQ20f" should read -- NQ20 ~--;
line 42, after '"NQ24" delete "to";

Column 37, line 64, after ''logic'" insert -- elements
having a plurality of =--;

Column 39, at approximately line 37, between ''the' and
"secondary" insert -- memory means and decodes it for controlling
the primary and --; line 49, "into" should read -- in --;
line 50, between 'a'" and "of'" insert -- plurality --.

Signed and Sealed this

sixn Day of suy 1976
[SEAL])

Attest:

RUTH.C. M{SON C. MARSHALL DANN
Attesting Officer Commissioner of Patents and Trademarks

